# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from enum import Enum, unique from typing import Any, Dict, List, Optional, Union from pydantic import BaseModel, Field from typing_extensions import Literal @unique class Role(str, Enum): USER = "user" ASSISTANT = "assistant" SYSTEM = "system" FUNCTION = "function" TOOL = "tool" @unique class Finish(str, Enum): STOP = "stop" LENGTH = "length" TOOL = "tool_calls" class ModelCard(BaseModel): id: str object: Literal["model"] = "model" created: int = Field(default_factory=lambda: int(time.time())) owned_by: Literal["owner"] = "owner" class ModelList(BaseModel): object: Literal["list"] = "list" data: List[ModelCard] = [] class Function(BaseModel): name: str arguments: str class FunctionDefinition(BaseModel): name: str description: str parameters: Dict[str, Any] class FunctionAvailable(BaseModel): type: Literal["function", "code_interpreter"] = "function" function: Optional[FunctionDefinition] = None class FunctionCall(BaseModel): id: str type: Literal["function"] = "function" function: Function class ImageURL(BaseModel): url: str class MultimodalInputItem(BaseModel): type: Literal["text", "image_url"] text: Optional[str] = None image_url: Optional[ImageURL] = None class ChatMessage(BaseModel): role: Role content: Optional[Union[str, List[MultimodalInputItem]]] = None tool_calls: Optional[List[FunctionCall]] = None class ChatCompletionMessage(BaseModel): role: Optional[Role] = None content: Optional[str] = None tool_calls: Optional[List[FunctionCall]] = None class ChatCompletionRequest(BaseModel): model: str messages: List[ChatMessage] tools: Optional[List[FunctionAvailable]] = None do_sample: bool = True temperature: Optional[float] = None top_p: Optional[float] = None n: int = 1 max_tokens: Optional[int] = None stop: Optional[Union[str, List[str]]] = None stream: bool = False class ChatCompletionResponseChoice(BaseModel): index: int message: ChatCompletionMessage finish_reason: Finish class ChatCompletionStreamResponseChoice(BaseModel): index: int delta: ChatCompletionMessage finish_reason: Optional[Finish] = None class ChatCompletionResponseUsage(BaseModel): prompt_tokens: int completion_tokens: int total_tokens: int class ChatCompletionResponse(BaseModel): id: str object: Literal["chat.completion"] = "chat.completion" created: int = Field(default_factory=lambda: int(time.time())) model: str choices: List[ChatCompletionResponseChoice] usage: ChatCompletionResponseUsage class ChatCompletionStreamResponse(BaseModel): id: str object: Literal["chat.completion.chunk"] = "chat.completion.chunk" created: int = Field(default_factory=lambda: int(time.time())) model: str choices: List[ChatCompletionStreamResponseChoice] class ScoreEvaluationRequest(BaseModel): model: str messages: List[str] max_length: Optional[int] = None class ScoreEvaluationResponse(BaseModel): id: str object: Literal["score.evaluation"] = "score.evaluation" model: str scores: List[float]