Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Exact Match metric.""" | |
import re | |
import string | |
import datasets | |
import numpy as np | |
import evaluate | |
_DESCRIPTION = """ | |
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Args: | |
predictions: List of predicted texts. | |
references: List of reference texts. | |
regexes_to_ignore: List, defaults to None. Regex expressions of characters to | |
ignore when calculating the exact matches. Note: these regexes are removed | |
from the input data before the changes based on the options below (e.g. ignore_case, | |
ignore_punctuation, ignore_numbers) are applied. | |
ignore_case: Boolean, defaults to False. If true, turns everything | |
to lowercase so that capitalization differences are ignored. | |
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before | |
comparing predictions and references. | |
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before | |
comparing predictions and references. | |
Returns: | |
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 1.0, inclusive. | |
Examples: | |
>>> exact_match = evaluate.load("exact_match") | |
>>> refs = ["the cat", "theater", "YELLING", "agent007"] | |
>>> preds = ["cat?", "theater", "yelling", "agent"] | |
>>> results = exact_match.compute(references=refs, predictions=preds) | |
>>> print(round(results["exact_match"], 2)) | |
0.25 | |
>>> exact_match = evaluate.load("exact_match") | |
>>> refs = ["the cat", "theater", "YELLING", "agent007"] | |
>>> preds = ["cat?", "theater", "yelling", "agent"] | |
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) | |
>>> print(round(results["exact_match"], 2)) | |
0.5 | |
>>> exact_match = evaluate.load("exact_match") | |
>>> refs = ["the cat", "theater", "YELLING", "agent007"] | |
>>> preds = ["cat?", "theater", "yelling", "agent"] | |
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) | |
>>> print(round(results["exact_match"], 2)) | |
0.75 | |
>>> exact_match = evaluate.load("exact_match") | |
>>> refs = ["the cat", "theater", "YELLING", "agent007"] | |
>>> preds = ["cat?", "theater", "yelling", "agent"] | |
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) | |
>>> print(round(results["exact_match"], 2)) | |
1.0 | |
>>> exact_match = evaluate.load("exact_match") | |
>>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."] | |
>>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."] | |
>>> results = exact_match.compute(references=refs, predictions=preds) | |
>>> print(round(results["exact_match"], 2)) | |
0.33 | |
""" | |
_CITATION = """ | |
""" | |
class nl2bash_metric(evaluate.Metric): | |
def _info(self): | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Value("string", id="sequence"), | |
"references": datasets.Value("string", id="sequence"), | |
} | |
), | |
reference_urls=[], | |
) | |
def _compute( | |
self, | |
predictions, | |
references, | |
regexes_to_ignore=None, | |
ignore_case=False, | |
ignore_punctuation=False, | |
ignore_numbers=False, | |
): | |
if regexes_to_ignore is not None: | |
for s in regexes_to_ignore: | |
predictions = np.array([re.sub(s, "", x) for x in predictions]) | |
references = np.array([re.sub(s, "", x) for x in references]) | |
else: | |
predictions = np.asarray(predictions) | |
references = np.asarray(references) | |
if ignore_case: | |
predictions = np.char.lower(predictions) | |
references = np.char.lower(references) | |
if ignore_punctuation: | |
repl_table = string.punctuation.maketrans("", "", string.punctuation) | |
predictions = np.char.translate(predictions, table=repl_table) | |
references = np.char.translate(references, table=repl_table) | |
if ignore_numbers: | |
repl_table = string.digits.maketrans("", "", string.digits) | |
predictions = np.char.translate(predictions, table=repl_table) | |
references = np.char.translate(references, table=repl_table) | |
score_list = predictions == references | |
return {"exact_match": np.mean(score_list)} |