File size: 20,578 Bytes
450060f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
"use server"

import { v4 as uuidv4 } from "uuid"
import Replicate from "replicate"

import { RenderRequest, RenderedScene, RenderingEngine, Settings } from "@/types"
import { generateSeed } from "@/lib/generateSeed"
import { sleep } from "@/lib/sleep"

const serverRenderingEngine = `${process.env.RENDERING_ENGINE || ""}` as RenderingEngine

// TODO: we should split Hugging Face and Replicate backends into separate files
const serverHuggingfaceApiKey = `${process.env.AUTH_HF_API_TOKEN || ""}`
const serverHuggingfaceApiUrl = `${process.env.RENDERING_HF_INFERENCE_ENDPOINT_URL || ""}`
const serverHuggingfaceInferenceApiModel = `${process.env.RENDERING_HF_INFERENCE_API_BASE_MODEL || ""}`
const serverHuggingfaceInferenceApiModelRefinerModel = `${process.env.RENDERING_HF_INFERENCE_API_REFINER_MODEL || ""}`
const serverHuggingfaceInferenceApiModelTrigger = `${process.env.RENDERING_HF_INFERENCE_API_MODEL_TRIGGER || ""}`
const serverHuggingfaceInferenceApiFileType = `${process.env.RENDERING_HF_INFERENCE_API_FILE_TYPE || ""}`

const serverReplicateApiKey = `${process.env.AUTH_REPLICATE_API_TOKEN || ""}`
const serverReplicateApiModel = `${process.env.RENDERING_REPLICATE_API_MODEL || ""}`
const serverReplicateApiModelVersion = `${process.env.RENDERING_REPLICATE_API_MODEL_VERSION || ""}`
const serverReplicateApiModelTrigger = `${process.env.RENDERING_REPLICATE_API_MODEL_TRIGGER || ""}`

const videochainToken = `${process.env.AUTH_VIDEOCHAIN_API_TOKEN || ""}`
const videochainApiUrl = `${process.env.RENDERING_VIDEOCHAIN_API_URL || ""}`

const serverOpenaiApiKey = `${process.env.AUTH_OPENAI_API_KEY || ""}`
const serverOpenaiApiBaseUrl = `${process.env.RENDERING_OPENAI_API_BASE_URL || "https://api.openai.com/v1"}`
const serverOpenaiApiModel = `${process.env.RENDERING_OPENAI_API_MODEL || "dall-e-3"}`

export async function newRender({
  prompt,
  // negativePrompt,
  nbFrames,
  width,
  height,
  withCache,
  settings,
}: {
  prompt: string
  // negativePrompt: string[]
  width: number
  height: number
  nbFrames: number
  withCache: boolean
  settings: Settings
}) {
  // throw new Error("Planned maintenance")
  if (!prompt) {
    const error = `cannot call the rendering API without a prompt, aborting..`
    console.error(error)
    throw new Error(error)
  }

  let defaulResult: RenderedScene = {
    renderId: "",
    status: "error",
    assetUrl: "",
    alt: prompt || "",
    maskUrl: "",
    error: "failed to fetch the data",
    segments: []
  }

  const nbInferenceSteps = 30
  const guidanceScale = 9

  let renderingEngine = serverRenderingEngine
  let openaiApiKey = serverOpenaiApiKey
  let openaiApiModel = serverOpenaiApiModel

  let replicateApiKey = serverReplicateApiKey
  let replicateApiModel = serverReplicateApiModel
  let replicateApiModelVersion = serverReplicateApiModelVersion
  let replicateApiModelTrigger = serverReplicateApiModelTrigger

  let huggingfaceApiKey = serverHuggingfaceApiKey
  let huggingfaceInferenceApiModel = serverHuggingfaceInferenceApiModel
  let huggingfaceApiUrl = serverHuggingfaceApiUrl
  let huggingfaceInferenceApiModelRefinerModel = serverHuggingfaceInferenceApiModelRefinerModel 
  let huggingfaceInferenceApiModelTrigger = serverHuggingfaceInferenceApiModelTrigger
  let huggingfaceInferenceApiFileType = serverHuggingfaceInferenceApiFileType

  const placeholder = "<USE YOUR OWN TOKEN>"

  // console.log("settings:", JSON.stringify(settings, null, 2))

  if (
    settings.renderingModelVendor === "OPENAI" && 
    settings.openaiApiKey &&
    settings.openaiApiKey !== placeholder &&
    settings.openaiApiModel
  ) {
    console.log("using OpenAI using user credentials (hidden)")
    renderingEngine = "OPENAI"
    openaiApiKey = settings.openaiApiKey
    openaiApiModel = settings.openaiApiModel
  } if (
    settings.renderingModelVendor === "REPLICATE" &&
    settings.replicateApiKey &&
    settings.replicateApiKey !== placeholder &&
    settings.replicateApiModel &&
    settings.replicateApiModelVersion
  ) {
    console.log("using Replicate using user credentials (hidden)")
    renderingEngine = "REPLICATE"
    replicateApiKey = settings.replicateApiKey
    replicateApiModel = settings.replicateApiModel
    replicateApiModelVersion = settings.replicateApiModelVersion
    replicateApiModelTrigger = settings.replicateApiModelTrigger
  } else if (
      settings.renderingModelVendor === "HUGGINGFACE" &&
      settings.huggingfaceApiKey &&
      settings.huggingfaceApiKey !== placeholder &&
      settings.huggingfaceInferenceApiModel
    ) {
      console.log("using Hugging Face using user credentials (hidden)")
    renderingEngine = "INFERENCE_API"
    huggingfaceApiKey = settings.huggingfaceApiKey
    huggingfaceInferenceApiModel = settings.huggingfaceInferenceApiModel
    huggingfaceInferenceApiModelTrigger = settings.huggingfaceInferenceApiModelTrigger
    huggingfaceInferenceApiFileType = settings.huggingfaceInferenceApiFileType
  } 

  try {
    if (renderingEngine === "OPENAI") {

      /*
      const openai = new OpenAI({
        apiKey: openaiApiKey
      });
      */

      // When using DALL·E 3, images can have a size of 1024x1024, 1024x1792 or 1792x1024 pixels.
      // the improved resolution is nice, but the AI Comic Factory needs a special ratio
      // anyway, let's see what we can do
      
      const size =
        width > height ? '1792x1024' :
        width < height ? '1024x1792' :
        '1024x1024'

      /*
      const response = await openai.createImage({
        model: "dall-e-3",
        prompt,
        n: 1,
        size: size as any,
        // quality: "standard",
      })
      */

      const res = await fetch(`${serverOpenaiApiBaseUrl}/images/generations`, {
        method: "POST",
        headers: {
          Accept: "application/json",
          "Content-Type": "application/json",
          Authorization: `Bearer ${openaiApiKey}`,
        },
        body: JSON.stringify({
          model: openaiApiModel,
          prompt,
          n: 1,
          size,
          // quality: "standard",
        }),
        cache: 'no-store',
      // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
      // next: { revalidate: 1 }
      })

      if (res.status !== 200) {
        throw new Error('Failed to fetch data')
      }
      
      const response = (await res.json()) as { data: { url: string }[] }

      // console.log("response:", response)
      return {
        renderId: uuidv4(),
        status: "completed",
        assetUrl: response.data[0].url || "", 
        alt: prompt,
        error: "",
        maskUrl: "",
        segments: []
      } as RenderedScene
    } else if (renderingEngine === "REPLICATE") {
      if (!replicateApiKey) {
        throw new Error(`invalid replicateApiKey, you need to configure your REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`)
      }
      if (!replicateApiModel) {
        throw new Error(`invalid replicateApiModel, you need to configure your REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`)
      }
      if (!replicateApiModelVersion) {
        throw new Error(`invalid replicateApiModelVersion, you need to configure your REPLICATE_API_MODEL_VERSION in order to use the REPLICATE rendering engine`)
      }
      const replicate = new Replicate({ auth: replicateApiKey })

      const seed = generateSeed()
      const prediction = await replicate.predictions.create({
        version: replicateApiModelVersion,
        input: {
          prompt: [
            "beautiful",
            // "intricate details",
            replicateApiModelTrigger || "",
            prompt,
            "award winning",
            "high resolution"
          ].filter(x => x).join(", "),
          width,
          height,
          seed,
          ...replicateApiModelTrigger && {
            lora_scale: 0.85 // we generally want something high here
          },
        }
      })
  
      // no need to reply straight away as images take time to generate, this isn't instantaneous
      // also our friends at Replicate won't like it if we spam them with requests
      await sleep(4000)

      return {
        renderId: prediction.id,
        status: "pending",
        assetUrl: "", 
        alt: prompt,
        error: prediction.error,
        maskUrl: "",
        segments: []
      } as RenderedScene
    } if (renderingEngine === "INFERENCE_ENDPOINT" || renderingEngine === "INFERENCE_API") {
      if (!huggingfaceApiKey) {
        throw new Error(`invalid huggingfaceApiKey, you need to configure your HF_API_TOKEN in order to use the ${renderingEngine} rendering engine`)
      }
      if (renderingEngine === "INFERENCE_ENDPOINT" && !huggingfaceApiUrl) {
        throw new Error(`invalid huggingfaceApiUrl, you need to configure your RENDERING_HF_INFERENCE_ENDPOINT_URL in order to use the INFERENCE_ENDPOINT rendering engine`)
      }
      if (renderingEngine === "INFERENCE_API" && !huggingfaceInferenceApiModel) {
        throw new Error(`invalid huggingfaceInferenceApiModel, you need to configure your RENDERING_HF_INFERENCE_API_BASE_MODEL in order to use the INFERENCE_API rendering engine`)
      }
      if (renderingEngine === "INFERENCE_API" && !huggingfaceInferenceApiModelRefinerModel) {
        throw new Error(`invalid huggingfaceInferenceApiModelRefinerModel, you need to configure your RENDERING_HF_INFERENCE_API_REFINER_MODEL in order to use the INFERENCE_API rendering engine`)
      }

      const baseModelUrl = renderingEngine === "INFERENCE_ENDPOINT"
        ? huggingfaceApiUrl
        : `https://api-inference.huggingface.co/models/${huggingfaceInferenceApiModel}`

      const positivePrompt = [
        "beautiful",
        // "intricate details",
        huggingfaceInferenceApiModelTrigger || "",
        prompt,
        "award winning",
        "high resolution"
      ].filter(x => x).join(", ")

      const res = await fetch(baseModelUrl, {
        method: "POST",
        headers: {
          "Content-Type": "application/json",
          Accept: huggingfaceInferenceApiFileType,
          Authorization: `Bearer ${huggingfaceApiKey}`,
        },
        body: JSON.stringify({
          inputs: positivePrompt,
          parameters: {
            num_inference_steps: nbInferenceSteps,
            guidance_scale: guidanceScale,
            width,
            height,
          },

          // this doesn't do what you think it does
          use_cache: false, // withCache,
        }),
        cache: "no-store",
        // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
        // next: { revalidate: 1 }
      })
  
  
      // Recommendation: handle errors
      if (res.status !== 200) {
        const content = await res.text()
        console.error(content)
        // This will activate the closest `error.js` Error Boundary
        throw new Error('Failed to fetch data')
      }

      const blob = await res.arrayBuffer()

      const contentType = res.headers.get('content-type')

      let assetUrl = `data:${contentType};base64,${Buffer.from(blob).toString('base64')}`
      
      // note: there is no "refiner" step yet for custom inference endpoint
      // you probably don't need it anyway, as you probably want to deploy an all-in-one model instead for perf reasons
      
      if (renderingEngine === "INFERENCE_API") {
        try {
          const refinerModelUrl = `https://api-inference.huggingface.co/models/${huggingfaceInferenceApiModelRefinerModel}`

          const res = await fetch(refinerModelUrl, {
            method: "POST",
            headers: {
              "Content-Type": "application/json",
              Authorization: `Bearer ${huggingfaceApiKey}`,
            },
            body: JSON.stringify({
              inputs: Buffer.from(blob).toString('base64'),
              parameters: {
                prompt: positivePrompt,
                num_inference_steps: nbInferenceSteps,
                guidance_scale: guidanceScale,
                width,
                height,
              },

              // this doesn't do what you think it does
              use_cache: false, // withCache,
            }),
            cache: "no-store",
            // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
            // next: { revalidate: 1 }
          })
      
      
          // Recommendation: handle errors
          if (res.status !== 200) {
            const content = await res.json()
            // if (content.error.include("currently loading")) {
            // console.log("refiner isn't ready yet")
            throw new Error(content?.error || 'Failed to fetch data')
          }

          const refinedBlob = await res.arrayBuffer()

          const contentType = res.headers.get('content-type')

          assetUrl = `data:${contentType};base64,${Buffer.from(refinedBlob).toString('base64')}`
          
        } catch (err) {
          console.log(`Refiner step failed, but this is not a blocker. Error details: ${err}`)
        }
      }

      return {
        renderId: uuidv4(),
        status: "completed",
        assetUrl, 
        alt: prompt,
        error: "",
        maskUrl: "",
        segments: []
      } as RenderedScene
    } else {
  
      const res = await fetch(`${videochainApiUrl}${videochainApiUrl.endsWith("/") ? "" : "/"}render`, {
        method: "POST",
        headers: {
          Accept: "application/json",
          "Content-Type": "application/json",
          Authorization: `Bearer ${videochainToken}`,
        },
        body: JSON.stringify({
          prompt,
          // negativePrompt, unused for now

          nbFrames,

          nbSteps: nbInferenceSteps, // 20 = fast, 30 = better, 50 = best
          actionnables: [], // ["text block"],
          segmentation: "disabled", // "firstframe", // one day we will remove this param, to make it automatic
          width,
          height,

          // no need to upscale right now as we generate tiny panels
          // maybe later we can provide an "export" button to PDF
          // unfortunately there are too many requests for upscaling,
          // the server is always down
          upscalingFactor: 1, // 2,

          // let's completely disable turbo mode, it doesn't work well for drawings and comics,
          // basically all the people I talked to said it sucked
          turbo: false, // settings.renderingUseTurbo,

          // analyzing doesn't work yet, it seems..
          analyze: false, // analyze: true,

          cache: "ignore"
        } as Partial<RenderRequest>),
        cache: 'no-store',
      // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
      // next: { revalidate: 1 }
      })

      if (res.status !== 200) {
        throw new Error('Failed to fetch data')
      }
      
      const response = (await res.json()) as RenderedScene

      return response
    }
  } catch (err) {
    console.error(err)
    return defaulResult
  }
}

export async function getRender(renderId: string, settings: Settings) {
  if (!renderId) {
    const error = `cannot call the rendering API without a renderId, aborting..`
    console.error(error)
    throw new Error(error)
  }


  let renderingEngine = serverRenderingEngine
  let openaiApiKey = serverOpenaiApiKey
  let openaiApiModel = serverOpenaiApiModel

  let replicateApiKey = serverReplicateApiKey
  let replicateApiModel = serverReplicateApiModel
  let replicateApiModelVersion = serverReplicateApiModelVersion
  let replicateApiModelTrigger = serverReplicateApiModelTrigger

  let huggingfaceApiKey = serverHuggingfaceApiKey
  let huggingfaceInferenceApiModel = serverHuggingfaceInferenceApiModel
  let huggingfaceInferenceApiModelTrigger = serverHuggingfaceInferenceApiModelTrigger
  let huggingfaceApiUrl = serverHuggingfaceApiUrl
  let huggingfaceInferenceApiModelRefinerModel = serverHuggingfaceInferenceApiModelRefinerModel 

  const placeholder = "<USE YOUR OWN TOKEN>"

  if (
    settings.renderingModelVendor === "OPENAI" && 
    settings.openaiApiKey &&
    settings.openaiApiKey !== placeholder &&
    settings.openaiApiModel
  ) {
    renderingEngine = "OPENAI"
    openaiApiKey = settings.openaiApiKey
    openaiApiModel = settings.openaiApiModel
  } if (
    settings.renderingModelVendor === "REPLICATE" &&
    settings.replicateApiKey &&
    settings.replicateApiKey !== placeholder &&
    settings.replicateApiModel &&
    settings.replicateApiModelVersion
  ) {
    renderingEngine = "REPLICATE"
    replicateApiKey = settings.replicateApiKey
    replicateApiModel = settings.replicateApiModel
    replicateApiModelVersion = settings.replicateApiModelVersion
    replicateApiModelTrigger = settings.replicateApiModelTrigger
  } else if (
      settings.renderingModelVendor === "HUGGINGFACE" &&
      settings.huggingfaceApiKey &&
      settings.huggingfaceApiKey !== placeholder &&
      settings.huggingfaceInferenceApiModel
    ) {
    // console.log("using Hugging Face using user credentials (hidden)")
    renderingEngine = "INFERENCE_API"
    huggingfaceApiKey = settings.huggingfaceApiKey
    huggingfaceInferenceApiModel = settings.huggingfaceInferenceApiModel
    huggingfaceInferenceApiModelTrigger = settings.huggingfaceInferenceApiModelTrigger
  } 

  let defaulResult: RenderedScene = {
    renderId: "",
    status: "pending",
    assetUrl: "",
    alt: "",
    maskUrl: "",
    error: "failed to fetch the data",
    segments: []
  }

  try {
    if (renderingEngine === "REPLICATE") {
      if (!replicateApiKey) {
        throw new Error(`invalid replicateApiKey, you need to configure your AUTH_REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`)
      }

       const res = await fetch(`https://api.replicate.com/v1/predictions/${renderId}`, {
        method: "GET",
        headers: {
          Authorization: `Token ${replicateApiKey}`,
        },
        cache: 'no-store',
      // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
      // next: { revalidate: 1 }
      })
    
      // Recommendation: handle errors
      if (res.status !== 200) {
        // This will activate the closest `error.js` Error Boundary
        throw new Error('Failed to fetch data')
      }
      
      const response = (await res.json()) as any

      return  {
        renderId,
        status: response?.error ? "error" : response?.status === "succeeded" ?  "completed" : "pending",
        assetUrl: `${response?.output || ""}`,
        alt: `${response?.input?.prompt || ""}`,
        error: `${response?.error || ""}`,
        maskUrl: "",
        segments: []
      } as RenderedScene
    } else {
      const res = await fetch(`${videochainApiUrl}/render/${renderId}`, {
        method: "GET",
        headers: {
          Accept: "application/json",
          "Content-Type": "application/json",
          Authorization: `Bearer ${videochainToken}`,
        },
        cache: 'no-store',
      // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
      // next: { revalidate: 1 }
      })
      
      if (res.status !== 200) {
        throw new Error('Failed to fetch data')
      }
      
      const response = (await res.json()) as RenderedScene
      return response
    }
  } catch (err) {
    console.error(err)
    defaulResult.status = "error"
    defaulResult.error = `${err}`
    return defaulResult
  }
}

export async function upscaleImage(image: string): Promise<{
  assetUrl: string
  error: string
}> {
  if (!image) {
    const error = `cannot call the rendering API without an image, aborting..`
    console.error(error)
    throw new Error(error)
  }

  let defaulResult = {
    assetUrl: "",
    error: "failed to fetch the data",
  }

  try {
    const res = await fetch(`${videochainApiUrl}/upscale`, {
      method: "POST",
      headers: {
        Accept: "application/json",
        "Content-Type": "application/json",
        Authorization: `Bearer ${videochainToken}`,
      },
      cache: 'no-store',
      body: JSON.stringify({ image, factor: 3 })
    // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
    // next: { revalidate: 1 }
    })

    if (res.status !== 200) {
      throw new Error('Failed to fetch data')
    }
    
    const response = (await res.json()) as {
      assetUrl: string
      error: string
    }
    return response
  } catch (err) {
    console.error(err)
    return defaulResult
  }
}