import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def generate_caption(image): inputs = processor(image, return_tensors="pt") outputs = model.generate(**inputs) caption = processor.decode(outputs[0], skip_special_tokens=True) return caption interface = gr.Interface( fn=generate_caption, inputs=gr.Image(type="pil"), outputs="text", title="Image-to-Text Captioning", description="Upload an image to generate a caption!" ) interface.launch()