import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline # Load the model and tokenizer model_name = 'IMISLab/GreekT5-umt5-small-greeksum' model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Set up the summarizer pipeline summarizer = pipeline( 'summarization', device = 'cpu', model = model, tokenizer = tokenizer, max_new_tokens = 128, truncation = True ) # Define the summarization function def generate_summary(text): output = summarizer('summarize: ' + text) return output[0]['summary_text'] # Create Gradio interface iface = gr.Interface( fn=generate_summary, # The function that Gradio will use inputs=gr.Textbox(label="Input Text", lines=5, placeholder="Enter the text to summarize..."), outputs=gr.Textbox(label="Summary"), live=True ) # Launch the Gradio interface iface.launch()