Spaces:
Sleeping
Sleeping
import os | |
if os.environ.get("SPACES_ZERO_GPU") is not None: | |
import spaces | |
else: | |
class spaces: | |
def GPU(func): | |
def wrapper(*args, **kwargs): | |
return func(*args, **kwargs) | |
return wrapper | |
import gradio as gr | |
import subprocess | |
#subprocess.run("git clone https://github.com/AI4Bharat/NeMo.git && cd NeMo && git checkout nemo-v2 && bash reinstall.sh", shell=True) | |
import torch | |
import nemo.collections.asr as nemo_asr | |
from pathlib import Path | |
model = nemo_asr.models.ASRModel.from_pretrained("ai4bharat/indicconformer_stt_ml_hybrid_rnnt_large") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.freeze() # inference mode | |
model = model.to(device) # transfer model to device | |
def infer(srcfile: str): | |
tmpfile = "sample_audio_infer_ready.wav" | |
subprocess.run(f"ffmpeg -i {srcfile} -ac 1 -ar 16000 {tmpfile}", shell=True) | |
model.cur_decoder = "ctc" | |
ctc_text = model.transcribe([tmpfile], batch_size=1, logprobs=False, language_id='ml')[0] | |
print(ctc_text) | |
model.cur_decoder = "rnnt" | |
rnnt_text = model.transcribe([tmpfile], batch_size=1, language_id='ml')[0] | |
print(rnnt_text) | |
if Path(tmpfile).exists(): Path(tmpfile).unlink() | |
return ctc_text, rnnt_text | |
with gr.Blocks() as demo: | |
input_audio = gr.Audio(label="Input", type="filepath", sources=["upload", "microphone"], format="wav") | |
run_button = gr.Button("Run", variant="primary") | |
with gr.Row(): | |
ctc_text = gr.Textbox(label="CTC", value="", show_copy_button=True) | |
rnnt_text = gr.Textbox(label="RNNT", value="", show_copy_button=True) | |
run_button.click(infer, [input_audio], [ctc_text, rnnt_text]) | |
demo.launch() | |