import gradio as gr from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download import os from pathlib import Path import shutil import gc import re import urllib.parse import subprocess import time from typing import Any def get_token(): try: token = HfFolder.get_token() except Exception: token = "" return token def set_token(token): try: HfFolder.save_token(token) except Exception: print(f"Error: Failed to save token.") def get_state(state: dict, key: str): if key in state.keys(): return state[key] else: print(f"State '{key}' not found.") return None def set_state(state: dict, key: str, value: Any): state[key] = value def get_user_agent(): return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0' def is_repo_exists(repo_id: str, repo_type: str="model"): hf_token = get_token() api = HfApi(token=hf_token) try: if api.repo_exists(repo_id=repo_id, repo_type=repo_type, token=hf_token): return True else: return False except Exception as e: print(f"Error: Failed to connect {repo_id} ({repo_type}). {e}") return True # for safe MODEL_TYPE_CLASS = { "diffusers:StableDiffusionPipeline": "SD 1.5", "diffusers:StableDiffusionXLPipeline": "SDXL", "diffusers:FluxPipeline": "FLUX", } def get_model_type(repo_id: str): hf_token = get_token() api = HfApi(token=hf_token) lora_filename = "pytorch_lora_weights.safetensors" diffusers_filename = "model_index.json" default = "SDXL" try: if api.file_exists(repo_id=repo_id, filename=lora_filename, token=hf_token): return "LoRA" if not api.file_exists(repo_id=repo_id, filename=diffusers_filename, token=hf_token): return "None" model = api.model_info(repo_id=repo_id, token=hf_token) tags = model.tags for tag in tags: if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default) except Exception: return default return default def list_uniq(l): return sorted(set(l), key=l.index) def list_sub(a, b): return [e for e in a if e not in b] def is_repo_name(s): return re.fullmatch(r'^[\w_\-\.]+/[\w_\-\.]+$', s) def get_hf_url(repo_id: str, repo_type: str="model"): if repo_type == "dataset": url = f"https://huggingface.co/datasets/{repo_id}" elif repo_type == "space": url = f"https://huggingface.co/spaces/{repo_id}" else: url = f"https://huggingface.co/{repo_id}" return url def split_hf_url(url: str): try: s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets|spaces)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0]) if len(s) < 4: return "", "", "", "" repo_id = s[1] if s[0] == "datasets": repo_type = "dataset" elif s[0] == "spaces": repo_type = "space" else: repo_type = "model" subfolder = urllib.parse.unquote(s[2]) if s[2] else None filename = urllib.parse.unquote(s[3]) return repo_id, filename, subfolder, repo_type except Exception as e: print(e) def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)): hf_token = get_token() repo_id, filename, subfolder, repo_type = split_hf_url(url) try: print(f"Downloading {url} to {directory}") if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token) else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token) return path except Exception as e: print(f"Failed to download: {e}") return None def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)): # requires aria2, gdown try: url = url.strip() if "drive.google.com" in url: original_dir = os.getcwd() os.chdir(directory) subprocess.run(f"gdown --fuzzy {url}", shell=True) os.chdir(original_dir) elif "huggingface.co" in url: url = url.replace("?download=true", "") if "/blob/" in url: url = url.replace("/blob/", "/resolve/") download_hf_file(directory, url) elif "civitai.com" in url: if civitai_api_key: url = f"'{url}&token={civitai_api_key}'" if "?" in url else f"{url}?token={civitai_api_key}" print(f"Downloading {url}") subprocess.run(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}", shell=True) else: print("You need an API key to download Civitai models.") else: os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") except Exception as e: print(f"Failed to download: {e}") def get_local_file_list(dir_path): file_list = [] for file in Path(dir_path).glob("**/*.*"): if file.is_file(): file_path = str(file) file_list.append(file_path) return file_list def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)): try: if not "http" in url and is_repo_name(url) and not Path(url).exists(): print(f"Use HF Repo: {url}") new_file = url elif not "http" in url and Path(url).exists(): print(f"Use local file: {url}") new_file = url elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists(): print(f"File to download alreday exists: {url}") new_file = f"{temp_dir}/{url.split('/')[-1]}" else: print(f"Start downloading: {url}") before = get_local_file_list(temp_dir) download_thing(temp_dir, url.strip(), civitai_key) after = get_local_file_list(temp_dir) new_file = list_sub(after, before)[0] if list_sub(after, before) else "" if not new_file: print(f"Download failed: {url}") return "" print(f"Download completed: {url}") return new_file except Exception as e: print(f"Download failed: {url} {e}") return "" def download_repo(repo_id: str, dir_path: str, progress=gr.Progress(track_tqdm=True)): # for diffusers repo hf_token = get_token() try: snapshot_download(repo_id=repo_id, local_dir=dir_path, token=hf_token, allow_patterns=["*.safetensors", "*.bin"], ignore_patterns=["*.fp16.*", "/*.safetensors", "/*.bin"], force_download=True) return True except Exception as e: print(f"Error: Failed to download {repo_id}. {e}") gr.Warning(f"Error: Failed to download {repo_id}. {e}") return False def upload_repo(repo_id: str, dir_path: str, is_private: bool, is_pr: bool=False, progress=gr.Progress(track_tqdm=True)): # for diffusers repo hf_token = get_token() api = HfApi(token=hf_token) try: progress(0, desc="Start uploading...") api.create_repo(repo_id=repo_id, token=hf_token, private=is_private, exist_ok=True) api.upload_folder(repo_id=repo_id, folder_path=dir_path, path_in_repo="", create_pr=is_pr, token=hf_token) progress(1, desc="Uploaded.") return get_hf_url(repo_id, "model") except Exception as e: print(f"Error: Failed to upload to {repo_id}. {e}") return "" def upload_repo_old(repo_id: str, dir_path: str, is_private: bool, is_pr: bool=False, progress=gr.Progress(track_tqdm=True)): # for diffusers repo hf_token = get_token() api = HfApi(token=hf_token) try: progress(0, desc="Start uploading...") api.create_repo(repo_id=repo_id, token=hf_token, private=is_private, exist_ok=True) for path in Path(dir_path).glob("*"): if path.is_dir(): api.upload_folder(repo_id=repo_id, folder_path=str(path), path_in_repo=path.name, create_pr=is_pr, token=hf_token) elif path.is_file(): api.upload_file(repo_id=repo_id, path_or_fileobj=str(path), path_in_repo=path.name, create_pr=is_pr, token=hf_token) progress(1, desc="Uploaded.") return get_hf_url(repo_id, "model") except Exception as e: print(f"Error: Failed to upload to {repo_id}. {e}") return "" HF_SUBFOLDER_NAME = ["None", "user_repo"] def duplicate_hf_repo(src_repo: str, dst_repo: str, src_repo_type: str, dst_repo_type: str, is_private: bool, subfolder_type: str=HF_SUBFOLDER_NAME[1], progress=gr.Progress(track_tqdm=True)): hf_token = get_token() api = HfApi(token=hf_token) try: if subfolder_type == "user_repo": subfolder = src_repo.replace("/", "_") else: subfolder = "" progress(0, desc="Start duplicating...") api.create_repo(repo_id=dst_repo, repo_type=dst_repo_type, private=is_private, exist_ok=True, token=hf_token) for path in api.list_repo_files(repo_id=src_repo, repo_type=src_repo_type, token=hf_token): file = hf_hub_download(repo_id=src_repo, filename=path, repo_type=src_repo_type, token=hf_token) if not Path(file).exists(): continue if Path(file).is_dir(): # unused for now api.upload_folder(repo_id=dst_repo, folder_path=file, path_in_repo=f"{subfolder}/{path}" if subfolder else path, repo_type=dst_repo_type, token=hf_token) elif Path(file).is_file(): api.upload_file(repo_id=dst_repo, path_or_fileobj=file, path_in_repo=f"{subfolder}/{path}" if subfolder else path, repo_type=dst_repo_type, token=hf_token) if Path(file).exists(): Path(file).unlink() progress(1, desc="Duplicated.") return f"{get_hf_url(dst_repo, dst_repo_type)}/tree/main/{subfolder}" if subfolder else get_hf_url(dst_repo, dst_repo_type) except Exception as e: print(f"Error: Failed to duplicate repo {src_repo} to {dst_repo}. {e}") return "" BASE_DIR = str(Path(__file__).resolve().parent.resolve()) CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY") def get_file(url: str, path: str): # requires aria2, gdown print(f"Downloading {url} to {path}...") get_download_file(path, url, CIVITAI_API_KEY) def git_clone(url: str, path: str, pip: bool=False, addcmd: str=""): # requires git os.makedirs(str(Path(BASE_DIR, path)), exist_ok=True) os.chdir(Path(BASE_DIR, path)) print(f"Cloning {url} to {path}...") cmd = f'git clone {url}' print(f'Running {cmd} at {Path.cwd()}') i = subprocess.run(cmd, shell=True).returncode if i != 0: print(f'Error occured at running {cmd}') p = url.split("/")[-1] if not Path(p).exists: return if pip: os.chdir(Path(BASE_DIR, path, p)) cmd = f'pip install -r requirements.txt' print(f'Running {cmd} at {Path.cwd()}') i = subprocess.run(cmd, shell=True).returncode if i != 0: print(f'Error occured at running {cmd}') if addcmd: os.chdir(Path(BASE_DIR, path, p)) cmd = addcmd print(f'Running {cmd} at {Path.cwd()}') i = subprocess.run(cmd, shell=True).returncode if i != 0: print(f'Error occured at running {cmd}') def run(cmd: str, timeout: float=0): print(f'Running {cmd} at {Path.cwd()}') if timeout == 0: i = subprocess.run(cmd, shell=True).returncode if i != 0: print(f'Error occured at running {cmd}') else: p = subprocess.Popen(cmd, shell=True) time.sleep(timeout) p.terminate() print(f'Terminated in {timeout} seconds')