import gradio as gr from convert_url_to_diffusers_sd_gr import ( convert_url_to_diffusers_repo_sd, SCHEDULER_CONFIG_MAP, ) vaes = [ "", "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt", "https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt", ] loras = [ "", "https://huggingface.co/SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep_LoRA/blob/main/spo-sd-v1-5_4k-p_10ep_lora_diffusers.safetensors", ] schedulers = list(SCHEDULER_CONFIG_MAP.keys()) preset_dict = { "Default": [True, "", "Euler", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0, "v1", 768, "ema"], "Bake in standard VAE": [True, "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt", "Euler", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0, "v1", 768, "ema"], } def set_presets(preset: str="Default"): p = [] if preset in preset_dict.keys(): p = preset_dict[preset] else: p = preset_dict["Default"] return p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15] css = """ .title { font-size: 3em; align-items: center; text-align: center; } .info { align-items: center; text-align: center; } .block.result { margin: 1em 0; padding: 1em; box-shadow: 0 0 3px 3px #664422, 0 0 3px 2px #664422 inset; border-radius: 6px; background: #665544; } """ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css, delete_cache=(60, 3600)) as demo: gr.Markdown("# Download and convert any Stable Diffusion 1.5 / 2.0 safetensors to Diffusers and create your repo", elem_classes="title") gr.Markdown( f""" - [A CLI version of this tool (without uploading-related function) is available here](https://huggingface.co/spaces/John6666/sd-to-diffusers-v2/tree/main/local). **⚠️IMPORTANT NOTICE⚠️**
From an information security standpoint, it is dangerous to expose your access token or key to others. If you do use it, I recommend that you duplicate this space on your own account before doing so. Keys and tokens could be set to SECRET (HF_TOKEN, CIVITAI_API_KEY) if it's placed in your own space. It saves you the trouble of typing them in.

**The steps are the following**: - Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens). - Input a model download url from the Hub or Civitai or other sites. - If you want to download a model from Civitai, paste a Civitai API Key. - Input your HF user ID. e.g. 'yourid'. - Input your new repo name. If empty, auto-complete. e.g. 'newrepo'. - Set the parameters. If not sure, just use the defaults. - Click "Submit". - Patiently wait until the output changes. It takes approximately 1 minutes (downloading from HF). """ ) with gr.Column(): with gr.Group(): dl_url = gr.Textbox(label="URL to download", placeholder="https://huggingface.co/SG161222/RealVisXL_V4.0/blob/main/RealVisXL_V4.0.safetensors", value="", max_lines=1) with gr.Row(): hf_user = gr.Textbox(label="Your HF user ID", placeholder="username", value="", max_lines=1) hf_repo = gr.Textbox(label="New repo name", placeholder="reponame", info="If empty, auto-complete", value="", max_lines=1) with gr.Row(): hf_token = gr.Textbox(label="Your HF write token", placeholder="hf_...", value="", max_lines=1) civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1) with gr.Row(): is_upload_sf = gr.Checkbox(label="Upload single safetensors file into new repo", value=False) is_private = gr.Checkbox(label="Create private repo", value=True) presets = gr.Radio(label="Presets", choices=list(preset_dict.keys()), value="Default") with gr.Accordion("Advanced settings", open=False): with gr.Row(): is_half = gr.Checkbox(label="Half precision", value=True) model_type = gr.Radio(label="Model type", choices=["v1", "v2"], value="v1") sample_size = gr.Radio(label="Sample size (px)", choices=[512, 768], value=768) ema = gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"], value="ema") with gr.Row(): vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True) scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler") with gr.Row(): with gr.Column(): lora1 = gr.Dropdown(label="LoRA1", choices=loras, value="", allow_custom_value=True, min_width=320) lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale") with gr.Column(): lora2 = gr.Dropdown(label="LoRA2", choices=loras, value="", allow_custom_value=True, min_width=320) lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale") with gr.Column(): lora3 = gr.Dropdown(label="LoRA3", choices=loras, value="", allow_custom_value=True, min_width=320) lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale") with gr.Column(): lora4 = gr.Dropdown(label="LoRA4", choices=loras, value="", allow_custom_value=True, min_width=320) lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale") with gr.Column(): lora5 = gr.Dropdown(label="LoRA5", choices=loras, value="", allow_custom_value=True, min_width=320) lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale") run_button = gr.Button(value="Submit") repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=None) output_md = gr.Markdown(label="Output", value="

", elem_classes="result") gr.DuplicateButton(value="Duplicate Space") gr.on( triggers=[run_button.click], fn=convert_url_to_diffusers_repo_sd, inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_upload_sf, repo_urls, is_half, vae, scheduler, lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s, model_type, sample_size, ema], outputs=[repo_urls, output_md], ) presets.change( fn=set_presets, inputs=[presets], outputs=[is_half, vae, scheduler, lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s, model_type, sample_size, ema], queue=False, ) demo.queue() demo.launch()