import gradio as gr from convert_url_to_diffusers_sd_gr import ( convert_url_to_diffusers_repo_sd, SCHEDULER_CONFIG_MAP, ) vaes = [ "", "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt", "https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt", ] loras = [ "", "https://huggingface.co/SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep_LoRA/blob/main/spo-sd-v1-5_4k-p_10ep_lora_diffusers.safetensors", ] schedulers = list(SCHEDULER_CONFIG_MAP.keys()) css = """""" with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo: gr.Markdown("# Download and convert any Stable Diffusion 1.5 / 2.0 safetensors to Diffusers and create your repo") gr.Markdown( f""" - [A CLI version of this tool (without uploading-related function) is available here](https://huggingface.co/spaces/John6666/sd-to-diffusers-v2/tree/main/local). **⚠️IMPORTANT NOTICE⚠️**
From an information security standpoint, it is dangerous to expose your access token or key to others. If you do use it, I recommend that you duplicate this space on your own account before doing so. Keys and tokens could be set to SECRET (HF_TOKEN, CIVITAI_API_KEY) if it's placed in your own space. It saves you the trouble of typing them in.

**The steps are the following**: - Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens). - Input a model download url from the Hub or Civitai or other sites. - If you want to download a model from Civitai, paste a Civitai API Key. - Input your new repo name. e.g. 'yourid/newrepo'. - Set the parameters. If not sure, just use the defaults. - Click "Submit". - Patiently wait until the output changes. """ ) with gr.Column(): dl_url = gr.Textbox(label="URL to download", placeholder="https://...", value="", max_lines=1) repo_id = gr.Textbox(label="Your New Repo ID", placeholder="author/model", value="", max_lines=1) hf_token = gr.Textbox(label="Your HF write token", placeholder="", value="", max_lines=1) civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1) is_half = gr.Checkbox(label="Half precision", value=True) model_type = gr.Radio(label="Model type", choices=["v1", "v2"], value="v1") sample_size = gr.Radio(label="Sample size (px)", choices=[512, 768], value=768) ema = gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"], value="ema") vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True) scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler") lora1 = gr.Dropdown(label="LoRA1", choices=loras, value="", allow_custom_value=True) lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale") lora2 = gr.Dropdown(label="LoRA2", choices=loras, value="", allow_custom_value=True) lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale") lora3 = gr.Dropdown(label="LoRA3", choices=loras, value="", allow_custom_value=True) lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale") lora4 = gr.Dropdown(label="LoRA4", choices=loras, value="", allow_custom_value=True) lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale") lora5 = gr.Dropdown(label="LoRA5", choices=loras, value="", allow_custom_value=True) lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale") run_button = gr.Button(value="Submit") repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=None) output_md = gr.Markdown(label="Output") gr.DuplicateButton(value="Duplicate Space") gr.on( triggers=[run_button.click], fn=convert_url_to_diffusers_repo_sd, inputs=[dl_url, repo_id, hf_token, civitai_key, repo_urls, is_half, vae, scheduler, lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s, model_type, sample_size, ema], outputs=[repo_urls, output_md], ) demo.queue() demo.launch()