John6666's picture
Upload mod.py
18f4eda verified
import spaces
import gradio as gr
import torch
from PIL import Image
from pathlib import Path
import gc
import subprocess
import os
import re
from translatepy import Translator
from huggingface_hub import HfApi, hf_hub_download
from env import num_cns, model_trigger, HF_TOKEN, CIVITAI_API_KEY, DOWNLOAD_LORA_LIST, DIRECTORY_LORAS
from modutils import download_things
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
#subprocess.run('pip cache purge', shell=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_grad_enabled(False)
control_images = [None] * num_cns
control_modes = [-1] * num_cns
control_scales = [0] * num_cns
# Download stuffs
download_lora = ", ".join(DOWNLOAD_LORA_LIST)
for url in [url.strip() for url in download_lora.split(',')]:
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY)
def is_repo_name(s):
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
def is_repo_exists(repo_id):
from huggingface_hub import HfApi
api = HfApi()
try:
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id}.")
print(e)
return True # for safe
translator = Translator()
def translate_to_en(input: str):
try:
output = str(translator.translate(input, 'English'))
except Exception as e:
output = input
print(e)
return output
def clear_cache():
try:
torch.cuda.empty_cache()
#torch.cuda.reset_max_memory_allocated()
#torch.cuda.reset_peak_memory_stats()
gc.collect()
except Exception as e:
print(e)
raise Exception(f"Cache clearing error: {e}") from e
def get_repo_safetensors(repo_id: str):
api = HfApi(token=HF_TOKEN)
try:
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
gr.Warning(f"Error: Failed to get {repo_id}'s info.")
return gr.update(choices=[])
files = [f for f in files if f.endswith(".safetensors")]
if len(files) == 0: return gr.update(value="", choices=[])
else: return gr.update(value=files[0], choices=files)
def expand2square(pil_img: Image.Image, background_color: tuple=(0, 0, 0)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
# https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny/blob/main/app.py
def resize_image(image, target_width, target_height, crop=True):
from image_datasets.canny_dataset import c_crop
if crop:
image = c_crop(image) # Crop the image to square
original_width, original_height = image.size
# Resize to match the target size without stretching
scale = max(target_width / original_width, target_height / original_height)
resized_width = int(scale * original_width)
resized_height = int(scale * original_height)
image = image.resize((resized_width, resized_height), Image.LANCZOS)
# Center crop to match the target dimensions
left = (resized_width - target_width) // 2
top = (resized_height - target_height) // 2
image = image.crop((left, top, left + target_width, top + target_height))
else:
image = image.resize((target_width, target_height), Image.LANCZOS)
return image
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union/blob/main/app.py
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
controlnet_union_modes = {
"None": -1,
#"scribble_hed": 0,
"canny": 0, # supported
"mlsd": 0, #supported
"tile": 1, #supported
"depth_midas": 2, # supported
"blur": 3, # supported
"openpose": 4, # supported
"gray": 5, # supported
"low_quality": 6, # supported
}
# https://github.com/pytorch/pytorch/issues/123834
def get_control_params():
from diffusers.utils import load_image
modes = []
images = []
scales = []
for i, mode in enumerate(control_modes):
if mode == -1 or control_images[i] is None: continue
modes.append(control_modes[i])
images.append(load_image(control_images[i]))
scales.append(control_scales[i])
return modes, images, scales
from preprocessor import Preprocessor
def preprocess_image(image: Image.Image, control_mode: str, height: int, width: int,
preprocess_resolution: int):
if control_mode == "None": return image
image_resolution = max(width, height)
image_before = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
# generated control_
print("start to generate control image")
preprocessor = Preprocessor()
if control_mode == "depth_midas":
preprocessor.load("Midas")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "openpose":
preprocessor.load("Openpose")
control_image = preprocessor(
image=image_before,
hand_and_face=True,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "canny":
preprocessor.load("Canny")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "mlsd":
preprocessor.load("MLSD")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "scribble_hed":
preprocessor.load("HED")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "low_quality" or control_mode == "gray" or control_mode == "blur" or control_mode == "tile":
control_image = image_before
image_width = 768
image_height = 768
else:
# make sure control image size is same as resized_image
image_width, image_height = control_image.size
image_after = resize_image(control_image, width, height, False)
ref_width, ref_height = image.size
print(f"generate control image success: {ref_width}x{ref_height} => {image_width}x{image_height}")
return image_after
def get_control_union_mode():
return list(controlnet_union_modes.keys())
def set_control_union_mode(i: int, mode: str, scale: str):
global control_modes
global control_scales
control_modes[i] = controlnet_union_modes.get(mode, 0)
control_scales[i] = scale
if mode != "None": return True
else: return gr.update(visible=True)
def set_control_union_image(i: int, mode: str, image: Image.Image | None, height: int, width: int, preprocess_resolution: int):
global control_images
if image is None: return None
control_images[i] = preprocess_image(image, mode, height, width, preprocess_resolution)
return control_images[i]
def get_canny_image(image: Image.Image, height: int, width: int):
return preprocess_image(image, "canny", height, width, 384)
def get_depth_image(image: Image.Image, height: int, width: int):
return preprocess_image(image, "depth_midas", height, width, 384)
def preprocess_i2i_image(image_path_dict: dict, is_preprocess: bool, height: int, width: int):
try:
if not is_preprocess: return gr.update()
image_path = image_path_dict['background']
image_resolution = max(width, height)
image = Image.open(image_path)
image_resized = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
except Exception as e:
raise gr.Error(f"Error: {e}")
return gr.update(value=image_resized)
def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str):
lorajson[i]["name"] = str(name) if name != "None" else ""
lorajson[i]["scale"] = float(scale)
lorajson[i]["filename"] = str(filename)
lorajson[i]["trigger"] = str(trigger)
return lorajson
def is_valid_lora(lorajson: list[dict]):
valid = False
for d in lorajson:
if "name" in d.keys() and d["name"] and d["name"] != "None": valid = True
return valid
def get_trigger_word(lorajson: list[dict]):
trigger = ""
for d in lorajson:
if "name" in d.keys() and d["name"] and d["name"] != "None" and d["trigger"]:
trigger += ", " + d["trigger"]
return trigger
def get_model_trigger(model_name: str):
trigger = ""
if model_name in model_trigger.keys(): trigger += ", " + model_trigger[model_name]
return trigger
# https://huggingface.co/docs/diffusers/v0.23.1/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora
# https://github.com/huggingface/diffusers/issues/4919
def fuse_loras(pipe, lorajson: list[dict], a_list: list, w_list: list):
try:
if not lorajson or not isinstance(lorajson, list): return pipe, a_list, w_list
for d in lorajson:
if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None": continue
k = d["name"]
if is_repo_name(k) and is_repo_exists(k):
a_name = Path(k).stem
pipe.load_lora_weights(k, weight_name=d["filename"], adapter_name = a_name, low_cpu_mem_usage=False)
elif not Path(k).exists():
print(f"LoRA not found: {k}")
continue
else:
w_name = Path(k).name
a_name = Path(k).stem
pipe.load_lora_weights(k, weight_name = w_name, adapter_name = a_name, low_cpu_mem_usage=False)
a_list.append(a_name)
w_list.append(d["scale"])
if not a_list: return pipe, [], []
#pipe.set_adapters(a_list, adapter_weights=w_list)
#pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
#pipe.unload_lora_weights()
return pipe, a_list, w_list
except Exception as e:
print(f"External LoRA Error: {e}")
raise Exception(f"External LoRA Error: {e}") from e
def turbo_loras(pipe, turbo_mode: str, lora_names: list, lora_weights: list):
if turbo_mode == "Hyper-FLUX.1-dev-8steps":
lora_names.append("Hyper-FLUX1-dev-8steps")
lora_weights.append(0.125)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name=lora_names[-1], low_cpu_mem_usage=False)
steps = 8
elif turbo_mode == "Hyper-FLUX.1-dev-16steps":
lora_names.append("Hyper-FLUX1-dev-16steps")
lora_weights.append(0.125)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-16steps-lora.safetensors"), adapter_name=lora_names[-1], low_cpu_mem_usage=False)
steps = 16
elif turbo_mode == "FLUX.1-Turbo-Alpha 8-steps":
lora_names.append("FLUX1-Turbo-Alpha 8-steps")
lora_weights.append(1.0)
pipe.load_lora_weights("alimama-creative/FLUX.1-Turbo-Alpha", adapter_name=lora_names[-1], low_cpu_mem_usage=False)
steps = 8
return pipe, lora_names, lora_weights, steps
def description_ui():
gr.Markdown(
"""
- Mod of [multimodalart/flux-lora-the-explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer),
[multimodalart/flux-lora-lab](https://huggingface.co/spaces/multimodalart/flux-lora-lab),
[jiuface/FLUX.1-dev-Controlnet-Union](https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union),
[DamarJati/FLUX.1-DEV-Canny](https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny),
[gokaygokay/FLUX-Prompt-Generator](https://huggingface.co/spaces/gokaygokay/FLUX-Prompt-Generator),
[Sham786/flux-inpainting-with-lora](https://huggingface.co/spaces/Sham786/flux-inpainting-with-lora).
"""
)
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
def load_prompt_enhancer():
try:
model_checkpoint = "gokaygokay/Flux-Prompt-Enhance"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).eval().to(device=device)
enhancer_flux = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty=1.5, device=device)
except Exception as e:
print(e)
enhancer_flux = None
return enhancer_flux
enhancer_flux = load_prompt_enhancer()
@spaces.GPU(duration=30)
def enhance_prompt(input_prompt):
result = enhancer_flux("enhance prompt: " + translate_to_en(input_prompt), max_length = 256)
enhanced_text = result[0]['generated_text']
return enhanced_text
def save_image(image, savefile, modelname, prompt, height, width, steps, cfg, seed):
import uuid
from PIL import PngImagePlugin
import json
try:
if savefile is None: savefile = f"{modelname.split('/')[-1]}_{str(uuid.uuid4())}.png"
metadata = {"prompt": prompt, "Model": {"Model": modelname.split("/")[-1]}}
metadata["num_inference_steps"] = steps
metadata["guidance_scale"] = cfg
metadata["seed"] = seed
metadata["resolution"] = f"{width} x {height}"
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("metadata", metadata_str)
image.save(savefile, "PNG", pnginfo=info)
return str(Path(savefile).resolve())
except Exception as e:
print(f"Failed to save image file: {e}")
raise Exception(f"Failed to save image file:") from e
load_prompt_enhancer.zerogpu = True
fuse_loras.zerogpu = True
preprocess_image.zerogpu = True
get_control_params.zerogpu = True
clear_cache.zerogpu = True