Spaces:
Sleeping
Sleeping
JohannesBerends
commited on
Upload folder using huggingface_hub
Browse files- .gitattributes +38 -35
- =2.0.0 +10 -0
- README.md +17 -12
- __pycache__/inference_pb2.cpython-310.pyc +0 -0
- __pycache__/inference_pb2.cpython-39.pyc +0 -0
- __pycache__/inference_pb2_grpc.cpython-310.pyc +0 -0
- __pycache__/inference_pb2_grpc.cpython-39.pyc +0 -0
- app.py +156 -0
- inference_pb2.py +30 -0
- inference_pb2.pyi +29 -0
- inference_pb2_grpc.py +101 -0
- input/0.png +3 -0
- input/1.png +3 -0
- input/10.jpg +0 -0
- input/11.jpg +0 -0
- input/2.png +3 -0
- input/3.jpg +0 -0
- input/4.jpg +0 -0
- input/5.jpg +0 -0
- input/6.png +3 -0
- input/7.png +3 -0
- input/8.png +3 -0
- input/9.jpg +0 -0
- requirements.txt +10 -0
- shape_predictor_68_face_landmarks.dat +3 -0
- test.py +5 -0
- utils/__pycache__/drive.cpython-310.pyc +0 -0
- utils/__pycache__/drive.cpython-39.pyc +0 -0
- utils/__pycache__/shape_predictor.cpython-310.pyc +0 -0
- utils/__pycache__/shape_predictor.cpython-39.pyc +0 -0
- utils/drive.py +110 -0
- utils/shape_predictor.py +194 -0
.gitattributes
CHANGED
@@ -1,35 +1,38 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
|
=2.0.0
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Requirement already satisfied: grpcio in c:\users\administrator\appdata\local\programs\python\python310\lib\site-packages (1.63.0)
|
2 |
+
Collecting grpcio
|
3 |
+
Using cached grpcio-1.64.1-cp310-cp310-win_amd64.whl.metadata (3.4 kB)
|
4 |
+
Using cached grpcio-1.64.1-cp310-cp310-win_amd64.whl (4.1 MB)
|
5 |
+
Installing collected packages: grpcio
|
6 |
+
Attempting uninstall: grpcio
|
7 |
+
Found existing installation: grpcio 1.63.0
|
8 |
+
Uninstalling grpcio-1.63.0:
|
9 |
+
Successfully uninstalled grpcio-1.63.0
|
10 |
+
Successfully installed grpcio-1.64.1
|
README.md
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
-
---
|
2 |
-
title: HairFastGAN
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: HairFastGAN
|
3 |
+
emoji: 💈
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.31.5
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
custom_headers:
|
12 |
+
cross-origin-embedder-policy: require-corp
|
13 |
+
cross-origin-opener-policy: same-origin
|
14 |
+
cross-origin-resource-policy: cross-origin
|
15 |
+
---
|
16 |
+
|
17 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/inference_pb2.cpython-310.pyc
ADDED
Binary file (1.21 kB). View file
|
|
__pycache__/inference_pb2.cpython-39.pyc
ADDED
Binary file (1.2 kB). View file
|
|
__pycache__/inference_pb2_grpc.cpython-310.pyc
ADDED
Binary file (3.21 kB). View file
|
|
__pycache__/inference_pb2_grpc.cpython-39.pyc
ADDED
Binary file (3.22 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
from io import BytesIO
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import grpc
|
7 |
+
from PIL import Image
|
8 |
+
from cachetools import LRUCache
|
9 |
+
|
10 |
+
from inference_pb2 import HairSwapRequest, HairSwapResponse
|
11 |
+
from inference_pb2_grpc import HairSwapServiceStub
|
12 |
+
from utils.shape_predictor import align_face
|
13 |
+
|
14 |
+
|
15 |
+
def get_bytes(img):
|
16 |
+
if img is None:
|
17 |
+
return img
|
18 |
+
|
19 |
+
buffered = BytesIO()
|
20 |
+
img.save(buffered, format="JPEG")
|
21 |
+
return buffered.getvalue()
|
22 |
+
|
23 |
+
|
24 |
+
def bytes_to_image(image: bytes) -> Image.Image:
|
25 |
+
image = Image.open(BytesIO(image))
|
26 |
+
return image
|
27 |
+
|
28 |
+
|
29 |
+
def center_crop(img):
|
30 |
+
width, height = img.size
|
31 |
+
side = min(width, height)
|
32 |
+
|
33 |
+
left = (width - side) / 2
|
34 |
+
top = (height - side) / 2
|
35 |
+
right = (width + side) / 2
|
36 |
+
bottom = (height + side) / 2
|
37 |
+
|
38 |
+
img = img.crop((left, top, right, bottom))
|
39 |
+
return img
|
40 |
+
|
41 |
+
|
42 |
+
def resize(name):
|
43 |
+
def resize_inner(img, align):
|
44 |
+
global align_cache
|
45 |
+
|
46 |
+
if name in align:
|
47 |
+
img_hash = hashlib.md5(get_bytes(img)).hexdigest()
|
48 |
+
|
49 |
+
if img_hash not in align_cache:
|
50 |
+
img = align_face(img, return_tensors=False)[0]
|
51 |
+
align_cache[img_hash] = img
|
52 |
+
else:
|
53 |
+
img = align_cache[img_hash]
|
54 |
+
|
55 |
+
elif img.size != (1024, 1024):
|
56 |
+
img = center_crop(img)
|
57 |
+
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
58 |
+
|
59 |
+
return img
|
60 |
+
|
61 |
+
return resize_inner
|
62 |
+
|
63 |
+
|
64 |
+
def swap_hair(face, shape, color, blending, poisson_iters, poisson_erosion):
|
65 |
+
if not face and not shape and not color:
|
66 |
+
return gr.update(visible=False), gr.update(value="Need to upload a face and at least a shape or color ❗", visible=True)
|
67 |
+
elif not face:
|
68 |
+
return gr.update(visible=False), gr.update(value="Need to upload a face ❗", visible=True)
|
69 |
+
elif not shape and not color:
|
70 |
+
return gr.update(visible=False), gr.update(value="Need to upload at least a shape or color ❗", visible=True)
|
71 |
+
|
72 |
+
face_bytes, shape_bytes, color_bytes = map(lambda item: get_bytes(item), (face, shape, color))
|
73 |
+
|
74 |
+
if shape_bytes is None:
|
75 |
+
shape_bytes = b'face'
|
76 |
+
if color_bytes is None:
|
77 |
+
color_bytes = b'shape'
|
78 |
+
if os.environ.get('https_proxy'):
|
79 |
+
del os.environ['https_proxy']
|
80 |
+
if os.environ.get('http_proxy'):
|
81 |
+
del os.environ['http_proxy']
|
82 |
+
os.environ['SERVER'] = '172.16.4.26:7860'
|
83 |
+
|
84 |
+
# with grpc.insecure_channel(os.environ['SERVER'], options=(('grpc.enable_http_proxy', 0),)) as channel:
|
85 |
+
# stub = HairSwapServiceStub(channel)
|
86 |
+
|
87 |
+
# output: HairSwapResponse = stub.swap(
|
88 |
+
# HairSwapRequest(face=face_bytes, shape=shape_bytes, color=color_bytes, blending=blending,
|
89 |
+
# poisson_iters=poisson_iters, poisson_erosion=poisson_erosion, use_cache=True)
|
90 |
+
# )
|
91 |
+
|
92 |
+
# output = bytes_to_image(output.image)
|
93 |
+
# return gr.update(value=output, visible=True), gr.update(visible=False)
|
94 |
+
|
95 |
+
|
96 |
+
def get_demo():
|
97 |
+
with gr.Blocks() as demo:
|
98 |
+
gr.Markdown("## HairFastGan")
|
99 |
+
gr.Markdown(
|
100 |
+
'<div style="display: flex; align-items: center; gap: 10px;">'
|
101 |
+
'<span>Official HairFastGAN Gradio demo:</span>'
|
102 |
+
'<a href="https://arxiv.org/abs/2404.01094"><img src="https://img.shields.io/badge/arXiv-2404.01094-b31b1b.svg" height=22.5></a>'
|
103 |
+
'<a href="https://github.com/AIRI-Institute/HairFastGAN"><img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" height=22.5></a>'
|
104 |
+
'<a href="https://huggingface.co/AIRI-Institute/HairFastGAN"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md.svg" height=22.5></a>'
|
105 |
+
'<a href="https://colab.research.google.com/#fileId=https://huggingface.co/AIRI-Institute/HairFastGAN/blob/main/notebooks/HairFast_inference.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=22.5></a>'
|
106 |
+
'</div>'
|
107 |
+
)
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column():
|
110 |
+
source = gr.Image(label="Source photo to try on the hairstyle", type="pil")
|
111 |
+
with gr.Row():
|
112 |
+
shape = gr.Image(label="Shape photo with desired hairstyle (optional)", type="pil")
|
113 |
+
color = gr.Image(label="Color photo with desired hair color (optional)", type="pil")
|
114 |
+
with gr.Accordion("Advanced Options", open=False):
|
115 |
+
blending = gr.Radio(["Article", "Alternative_v1", "Alternative_v2"], value='Article',
|
116 |
+
label="Color Encoder version", info="Selects a model for hair color transfer.")
|
117 |
+
poisson_iters = gr.Slider(0, 2500, value=0, step=1, label="Poisson iters",
|
118 |
+
info="The power of blending with the original image, helps to recover more details. Not included in the article, disabled by default.")
|
119 |
+
poisson_erosion = gr.Slider(1, 100, value=15, step=1, label="Poisson erosion",
|
120 |
+
info="Smooths out the blending area.")
|
121 |
+
align = gr.CheckboxGroup(["Face", "Shape", "Color"], value=["Face", "Shape", "Color"],
|
122 |
+
label="Image cropping [recommended]",
|
123 |
+
info="Selects which images to crop by face")
|
124 |
+
btn = gr.Button("Get the haircut")
|
125 |
+
with gr.Column():
|
126 |
+
output = gr.Image(label="Your result")
|
127 |
+
error_message = gr.Textbox(label="⚠️ Error ⚠️", visible=False, elem_classes="error-message")
|
128 |
+
|
129 |
+
gr.Examples(examples=[["input/0.png", "input/1.png", "input/2.png"], ["input/6.png", "input/7.png", None],
|
130 |
+
["input/10.jpg", None, "input/11.jpg"]],
|
131 |
+
inputs=[source, shape, color], outputs=output)
|
132 |
+
|
133 |
+
source.upload(fn=resize('Face'), inputs=[source, align], outputs=source)
|
134 |
+
shape.upload(fn=resize('Shape'), inputs=[shape, align], outputs=shape)
|
135 |
+
color.upload(fn=resize('Color'), inputs=[color, align], outputs=color)
|
136 |
+
|
137 |
+
btn.click(fn=swap_hair, inputs=[source, shape, color, blending, poisson_iters, poisson_erosion],
|
138 |
+
outputs=[output, error_message])
|
139 |
+
|
140 |
+
gr.Markdown('''To cite the paper by the authors
|
141 |
+
```
|
142 |
+
@article{nikolaev2024hairfastgan,
|
143 |
+
title={HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach},
|
144 |
+
author={Nikolaev, Maxim and Kuznetsov, Mikhail and Vetrov, Dmitry and Alanov, Aibek},
|
145 |
+
journal={arXiv preprint arXiv:2404.01094},
|
146 |
+
year={2024}
|
147 |
+
}
|
148 |
+
```
|
149 |
+
''')
|
150 |
+
return demo
|
151 |
+
|
152 |
+
|
153 |
+
if __name__ == '__main__':
|
154 |
+
align_cache = LRUCache(maxsize=10)
|
155 |
+
demo = get_demo()
|
156 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
inference_pb2.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
3 |
+
# source: inference.proto
|
4 |
+
# Protobuf Python Version: 5.26.1
|
5 |
+
"""Generated protocol buffer code."""
|
6 |
+
from google.protobuf import descriptor as _descriptor
|
7 |
+
from google.protobuf import descriptor_pool as _descriptor_pool
|
8 |
+
from google.protobuf import symbol_database as _symbol_database
|
9 |
+
from google.protobuf.internal import builder as _builder
|
10 |
+
# @@protoc_insertion_point(imports)
|
11 |
+
|
12 |
+
_sym_db = _symbol_database.Default()
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0finference.proto\x12\tinference\"\x92\x01\n\x0fHairSwapRequest\x12\x0c\n\x04\x66\x61\x63\x65\x18\x01 \x01(\x0c\x12\r\n\x05shape\x18\x02 \x01(\x0c\x12\r\n\x05\x63olor\x18\x03 \x01(\x0c\x12\x10\n\x08\x62lending\x18\x04 \x01(\t\x12\x15\n\rpoisson_iters\x18\x05 \x01(\x05\x12\x17\n\x0fpoisson_erosion\x18\x06 \x01(\x05\x12\x11\n\tuse_cache\x18\x07 \x01(\x08\"!\n\x10HairSwapResponse\x12\r\n\x05image\x18\x01 \x01(\x0c\x32R\n\x0fHairSwapService\x12?\n\x04swap\x12\x1a.inference.HairSwapRequest\x1a\x1b.inference.HairSwapResponseb\x06proto3')
|
18 |
+
|
19 |
+
_globals = globals()
|
20 |
+
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
21 |
+
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'inference_pb2', _globals)
|
22 |
+
if not _descriptor._USE_C_DESCRIPTORS:
|
23 |
+
DESCRIPTOR._loaded_options = None
|
24 |
+
_globals['_HAIRSWAPREQUEST']._serialized_start=31
|
25 |
+
_globals['_HAIRSWAPREQUEST']._serialized_end=177
|
26 |
+
_globals['_HAIRSWAPRESPONSE']._serialized_start=179
|
27 |
+
_globals['_HAIRSWAPRESPONSE']._serialized_end=212
|
28 |
+
_globals['_HAIRSWAPSERVICE']._serialized_start=214
|
29 |
+
_globals['_HAIRSWAPSERVICE']._serialized_end=296
|
30 |
+
# @@protoc_insertion_point(module_scope)
|
inference_pb2.pyi
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from google.protobuf import descriptor as _descriptor
|
2 |
+
from google.protobuf import message as _message
|
3 |
+
from typing import ClassVar as _ClassVar, Optional as _Optional
|
4 |
+
|
5 |
+
DESCRIPTOR: _descriptor.FileDescriptor
|
6 |
+
|
7 |
+
class HairSwapRequest(_message.Message):
|
8 |
+
__slots__ = ("face", "shape", "color", "blending", "poisson_iters", "poisson_erosion", "use_cache")
|
9 |
+
FACE_FIELD_NUMBER: _ClassVar[int]
|
10 |
+
SHAPE_FIELD_NUMBER: _ClassVar[int]
|
11 |
+
COLOR_FIELD_NUMBER: _ClassVar[int]
|
12 |
+
BLENDING_FIELD_NUMBER: _ClassVar[int]
|
13 |
+
POISSON_ITERS_FIELD_NUMBER: _ClassVar[int]
|
14 |
+
POISSON_EROSION_FIELD_NUMBER: _ClassVar[int]
|
15 |
+
USE_CACHE_FIELD_NUMBER: _ClassVar[int]
|
16 |
+
face: bytes
|
17 |
+
shape: bytes
|
18 |
+
color: bytes
|
19 |
+
blending: str
|
20 |
+
poisson_iters: int
|
21 |
+
poisson_erosion: int
|
22 |
+
use_cache: bool
|
23 |
+
def __init__(self, face: _Optional[bytes] = ..., shape: _Optional[bytes] = ..., color: _Optional[bytes] = ..., blending: _Optional[str] = ..., poisson_iters: _Optional[int] = ..., poisson_erosion: _Optional[int] = ..., use_cache: bool = ...) -> None: ...
|
24 |
+
|
25 |
+
class HairSwapResponse(_message.Message):
|
26 |
+
__slots__ = ("image",)
|
27 |
+
IMAGE_FIELD_NUMBER: _ClassVar[int]
|
28 |
+
image: bytes
|
29 |
+
def __init__(self, image: _Optional[bytes] = ...) -> None: ...
|
inference_pb2_grpc.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
2 |
+
"""Client and server classes corresponding to protobuf-defined services."""
|
3 |
+
import grpc
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import inference_pb2 as inference__pb2
|
7 |
+
|
8 |
+
GRPC_GENERATED_VERSION = '1.63.0'
|
9 |
+
GRPC_VERSION = grpc.__version__
|
10 |
+
EXPECTED_ERROR_RELEASE = '1.65.0'
|
11 |
+
SCHEDULED_RELEASE_DATE = 'June 25, 2024'
|
12 |
+
_version_not_supported = False
|
13 |
+
|
14 |
+
try:
|
15 |
+
from grpc._utilities import first_version_is_lower
|
16 |
+
_version_not_supported = first_version_is_lower(GRPC_VERSION, GRPC_GENERATED_VERSION)
|
17 |
+
except ImportError:
|
18 |
+
_version_not_supported = True
|
19 |
+
|
20 |
+
if _version_not_supported:
|
21 |
+
warnings.warn(
|
22 |
+
f'The grpc package installed is at version {GRPC_VERSION},'
|
23 |
+
+ f' but the generated code in inference_pb2_grpc.py depends on'
|
24 |
+
+ f' grpcio>={GRPC_GENERATED_VERSION}.'
|
25 |
+
+ f' Please upgrade your grpc module to grpcio>={GRPC_GENERATED_VERSION}'
|
26 |
+
+ f' or downgrade your generated code using grpcio-tools<={GRPC_VERSION}.'
|
27 |
+
+ f' This warning will become an error in {EXPECTED_ERROR_RELEASE},'
|
28 |
+
+ f' scheduled for release on {SCHEDULED_RELEASE_DATE}.',
|
29 |
+
RuntimeWarning
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
class HairSwapServiceStub(object):
|
34 |
+
"""Missing associated documentation comment in .proto file."""
|
35 |
+
|
36 |
+
def __init__(self, channel):
|
37 |
+
"""Constructor.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
channel: A grpc.Channel.
|
41 |
+
"""
|
42 |
+
self.swap = channel.unary_unary(
|
43 |
+
'/inference.HairSwapService/swap',
|
44 |
+
request_serializer=inference__pb2.HairSwapRequest.SerializeToString,
|
45 |
+
response_deserializer=inference__pb2.HairSwapResponse.FromString,
|
46 |
+
_registered_method=True)
|
47 |
+
|
48 |
+
|
49 |
+
class HairSwapServiceServicer(object):
|
50 |
+
"""Missing associated documentation comment in .proto file."""
|
51 |
+
|
52 |
+
def swap(self, request, context):
|
53 |
+
"""Missing associated documentation comment in .proto file."""
|
54 |
+
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
55 |
+
context.set_details('Method not implemented!')
|
56 |
+
raise NotImplementedError('Method not implemented!')
|
57 |
+
|
58 |
+
|
59 |
+
def add_HairSwapServiceServicer_to_server(servicer, server):
|
60 |
+
rpc_method_handlers = {
|
61 |
+
'swap': grpc.unary_unary_rpc_method_handler(
|
62 |
+
servicer.swap,
|
63 |
+
request_deserializer=inference__pb2.HairSwapRequest.FromString,
|
64 |
+
response_serializer=inference__pb2.HairSwapResponse.SerializeToString,
|
65 |
+
),
|
66 |
+
}
|
67 |
+
generic_handler = grpc.method_handlers_generic_handler(
|
68 |
+
'inference.HairSwapService', rpc_method_handlers)
|
69 |
+
server.add_generic_rpc_handlers((generic_handler,))
|
70 |
+
|
71 |
+
|
72 |
+
# This class is part of an EXPERIMENTAL API.
|
73 |
+
class HairSwapService(object):
|
74 |
+
"""Missing associated documentation comment in .proto file."""
|
75 |
+
|
76 |
+
@staticmethod
|
77 |
+
def swap(request,
|
78 |
+
target,
|
79 |
+
options=(),
|
80 |
+
channel_credentials=None,
|
81 |
+
call_credentials=None,
|
82 |
+
insecure=False,
|
83 |
+
compression=None,
|
84 |
+
wait_for_ready=None,
|
85 |
+
timeout=None,
|
86 |
+
metadata=None):
|
87 |
+
return grpc.experimental.unary_unary(
|
88 |
+
request,
|
89 |
+
target,
|
90 |
+
'/inference.HairSwapService/swap',
|
91 |
+
inference__pb2.HairSwapRequest.SerializeToString,
|
92 |
+
inference__pb2.HairSwapResponse.FromString,
|
93 |
+
options,
|
94 |
+
channel_credentials,
|
95 |
+
insecure,
|
96 |
+
call_credentials,
|
97 |
+
compression,
|
98 |
+
wait_for_ready,
|
99 |
+
timeout,
|
100 |
+
metadata,
|
101 |
+
_registered_method=True)
|
input/0.png
ADDED
Git LFS Details
|
input/1.png
ADDED
Git LFS Details
|
input/10.jpg
ADDED
input/11.jpg
ADDED
input/2.png
ADDED
Git LFS Details
|
input/3.jpg
ADDED
input/4.jpg
ADDED
input/5.jpg
ADDED
input/6.png
ADDED
Git LFS Details
|
input/7.png
ADDED
Git LFS Details
|
input/8.png
ADDED
Git LFS Details
|
input/9.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pillow==10.0.0
|
2 |
+
face_alignment==1.3.4
|
3 |
+
addict==2.4.0
|
4 |
+
git+https://github.com/openai/CLIP.git
|
5 |
+
gdown==3.12.2
|
6 |
+
grpcio==1.63.0
|
7 |
+
grpcio_tools==1.63.0
|
8 |
+
gradio==4.31.5
|
9 |
+
cachetools==5.3.3
|
10 |
+
dlib==19.24.1
|
shape_predictor_68_face_landmarks.dat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f
|
3 |
+
size 99693937
|
test.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# Provide a default value if SERVER is not set
|
4 |
+
server_address = os.environ.get('SERVER', '127.0.0.1')
|
5 |
+
print(f"Server address: {os.environ['SERVER']}")
|
utils/__pycache__/drive.cpython-310.pyc
ADDED
Binary file (3.58 kB). View file
|
|
utils/__pycache__/drive.cpython-39.pyc
ADDED
Binary file (3.6 kB). View file
|
|
utils/__pycache__/shape_predictor.cpython-310.pyc
ADDED
Binary file (5.79 kB). View file
|
|
utils/__pycache__/shape_predictor.cpython-39.pyc
ADDED
Binary file (5.8 kB). View file
|
|
utils/drive.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# URL helpers, see https://github.com/NVlabs/stylegan
|
2 |
+
# ------------------------------------------------------------------------------------------
|
3 |
+
|
4 |
+
import requests
|
5 |
+
import html
|
6 |
+
import hashlib
|
7 |
+
import gdown
|
8 |
+
import glob
|
9 |
+
import os
|
10 |
+
import io
|
11 |
+
from typing import Any
|
12 |
+
import re
|
13 |
+
import uuid
|
14 |
+
|
15 |
+
weight_dic = {'afhqwild.pt': 'https://drive.google.com/file/d/14OnzO4QWaAytKXVqcfWo_o2MzoR4ygnr/view?usp=sharing',
|
16 |
+
'afhqdog.pt': 'https://drive.google.com/file/d/16v6jPtKVlvq8rg2Sdi3-R9qZEVDgvvEA/view?usp=sharing',
|
17 |
+
'afhqcat.pt': 'https://drive.google.com/file/d/1HXLER5R3EMI8DSYDBZafoqpX4EtyOf2R/view?usp=sharing',
|
18 |
+
'ffhq.pt': 'https://drive.google.com/file/d/1AT6bNR2ppK8f2ETL_evT27f3R_oyWNHS/view?usp=sharing',
|
19 |
+
'metfaces.pt': 'https://drive.google.com/file/d/16wM2PwVWzaMsRgPExvRGsq6BWw_muKbf/view?usp=sharing',
|
20 |
+
'seg.pth': 'https://drive.google.com/file/d/1lIKvQaFKHT5zC7uS4p17O9ZpfwmwlS62/view?usp=sharing'}
|
21 |
+
|
22 |
+
|
23 |
+
def download_weight(weight_path):
|
24 |
+
gdown.download(weight_dic[os.path.basename(weight_path)],
|
25 |
+
output=weight_path, fuzzy=True)
|
26 |
+
|
27 |
+
|
28 |
+
def is_url(obj: Any) -> bool:
|
29 |
+
"""Determine whether the given object is a valid URL string."""
|
30 |
+
if not isinstance(obj, str) or not "://" in obj:
|
31 |
+
return False
|
32 |
+
try:
|
33 |
+
res = requests.compat.urlparse(obj)
|
34 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
35 |
+
return False
|
36 |
+
res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
|
37 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
38 |
+
return False
|
39 |
+
except:
|
40 |
+
return False
|
41 |
+
return True
|
42 |
+
|
43 |
+
|
44 |
+
def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True,
|
45 |
+
return_path: bool = False) -> Any:
|
46 |
+
"""Download the given URL and return a binary-mode file object to access the data."""
|
47 |
+
assert is_url(url)
|
48 |
+
assert num_attempts >= 1
|
49 |
+
|
50 |
+
# Lookup from cache.
|
51 |
+
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
|
52 |
+
if cache_dir is not None:
|
53 |
+
cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
|
54 |
+
if len(cache_files) == 1:
|
55 |
+
if (return_path):
|
56 |
+
return cache_files[0]
|
57 |
+
else:
|
58 |
+
return open(cache_files[0], "rb")
|
59 |
+
|
60 |
+
# Download.
|
61 |
+
url_name = None
|
62 |
+
url_data = None
|
63 |
+
with requests.Session() as session:
|
64 |
+
if verbose:
|
65 |
+
print("Downloading %s ..." % url, end="", flush=True)
|
66 |
+
for attempts_left in reversed(range(num_attempts)):
|
67 |
+
try:
|
68 |
+
with session.get(url) as res:
|
69 |
+
res.raise_for_status()
|
70 |
+
if len(res.content) == 0:
|
71 |
+
raise IOError("No data received")
|
72 |
+
|
73 |
+
if len(res.content) < 8192:
|
74 |
+
content_str = res.content.decode("utf-8")
|
75 |
+
if "download_warning" in res.headers.get("Set-Cookie", ""):
|
76 |
+
links = [html.unescape(link) for link in content_str.split('"') if
|
77 |
+
"export=download" in link]
|
78 |
+
if len(links) == 1:
|
79 |
+
url = requests.compat.urljoin(url, links[0])
|
80 |
+
raise IOError("Google Drive virus checker nag")
|
81 |
+
if "Google Drive - Quota exceeded" in content_str:
|
82 |
+
raise IOError("Google Drive quota exceeded")
|
83 |
+
|
84 |
+
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
|
85 |
+
url_name = match[1] if match else url
|
86 |
+
url_data = res.content
|
87 |
+
if verbose:
|
88 |
+
print(" done")
|
89 |
+
break
|
90 |
+
except:
|
91 |
+
if not attempts_left:
|
92 |
+
if verbose:
|
93 |
+
print(" failed")
|
94 |
+
raise
|
95 |
+
if verbose:
|
96 |
+
print(".", end="", flush=True)
|
97 |
+
|
98 |
+
# Save to cache.
|
99 |
+
if cache_dir is not None:
|
100 |
+
safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
|
101 |
+
cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
|
102 |
+
temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
|
103 |
+
os.makedirs(cache_dir, exist_ok=True)
|
104 |
+
with open(temp_file, "wb") as f:
|
105 |
+
f.write(url_data)
|
106 |
+
os.replace(temp_file, cache_file) # atomic
|
107 |
+
if (return_path): return cache_file
|
108 |
+
|
109 |
+
# Return data as file object.
|
110 |
+
return io.BytesIO(url_data)
|
utils/shape_predictor.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import PIL
|
5 |
+
import dlib
|
6 |
+
import numpy as np
|
7 |
+
import scipy
|
8 |
+
import scipy.ndimage
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
from torchvision import transforms as T
|
12 |
+
|
13 |
+
from utils.drive import open_url
|
14 |
+
|
15 |
+
"""
|
16 |
+
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
|
17 |
+
author: lzhbrian (https://lzhbrian.me)
|
18 |
+
date: 2020.1.5
|
19 |
+
note: code is heavily borrowed from
|
20 |
+
https://github.com/NVlabs/ffhq-dataset
|
21 |
+
http://dlib.net/face_landmark_detection.py.html
|
22 |
+
|
23 |
+
requirements:
|
24 |
+
apt install cmake
|
25 |
+
conda install Pillow numpy scipy
|
26 |
+
pip install dlib
|
27 |
+
# download face landmark model from:
|
28 |
+
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
def get_landmark(filepath, predictor):
|
33 |
+
"""get landmark with dlib
|
34 |
+
:return: np.array shape=(68, 2)
|
35 |
+
"""
|
36 |
+
detector = dlib.get_frontal_face_detector()
|
37 |
+
|
38 |
+
img = dlib.load_rgb_image(filepath)
|
39 |
+
dets = detector(img, 1)
|
40 |
+
filepath = Path(filepath)
|
41 |
+
print(f"{filepath.name}: Number of faces detected: {len(dets)}")
|
42 |
+
shapes = [predictor(img, d) for k, d in enumerate(dets)]
|
43 |
+
|
44 |
+
lms = [np.array([[tt.x, tt.y] for tt in shape.parts()]) for shape in shapes]
|
45 |
+
|
46 |
+
return lms
|
47 |
+
|
48 |
+
|
49 |
+
def get_landmark_from_tensors(tensors: list[torch.Tensor | Image.Image | np.ndarray], predictor):
|
50 |
+
detector = dlib.get_frontal_face_detector()
|
51 |
+
transform = T.ToPILImage()
|
52 |
+
images = []
|
53 |
+
lms = []
|
54 |
+
|
55 |
+
for k, tensor in enumerate(tensors):
|
56 |
+
if isinstance(tensor, torch.Tensor):
|
57 |
+
img_pil = transform(tensor)
|
58 |
+
else:
|
59 |
+
img_pil = tensor
|
60 |
+
img = np.array(img_pil)
|
61 |
+
images.append(img_pil)
|
62 |
+
|
63 |
+
dets = detector(img, 1)
|
64 |
+
if len(dets) == 0:
|
65 |
+
raise ValueError(f"No faces detected in the image {k}.")
|
66 |
+
elif len(dets) == 1:
|
67 |
+
print(f"Number of faces detected: {len(dets)}")
|
68 |
+
else:
|
69 |
+
print(f"Number of faces detected: {len(dets)}, get largest face")
|
70 |
+
|
71 |
+
# Find the largest face
|
72 |
+
dets = sorted(dets, key=lambda det: det.width() * det.height(), reverse=True)
|
73 |
+
shape = predictor(img, dets[0])
|
74 |
+
lm = np.array([[tt.x, tt.y] for tt in shape.parts()])
|
75 |
+
lms.append(lm)
|
76 |
+
|
77 |
+
return images, lms
|
78 |
+
|
79 |
+
|
80 |
+
def align_face(data, predictor=None, is_filepath=False, return_tensors=True):
|
81 |
+
"""
|
82 |
+
:param data: filepath or list torch Tensors
|
83 |
+
:return: list of PIL Images
|
84 |
+
"""
|
85 |
+
if predictor is None:
|
86 |
+
predictor_path = 'shape_predictor_68_face_landmarks.dat'
|
87 |
+
|
88 |
+
if not os.path.isfile(predictor_path):
|
89 |
+
print("Downloading Shape Predictor")
|
90 |
+
data_io = open_url("https://drive.google.com/uc?id=1huhv8PYpNNKbGCLOaYUjOgR1pY5pmbJx")
|
91 |
+
with open(predictor_path, 'wb') as f:
|
92 |
+
f.write(data_io.getbuffer())
|
93 |
+
|
94 |
+
predictor = dlib.shape_predictor(predictor_path)
|
95 |
+
|
96 |
+
if is_filepath:
|
97 |
+
lms = get_landmark(data, predictor)
|
98 |
+
else:
|
99 |
+
if not isinstance(data, list):
|
100 |
+
data = [data]
|
101 |
+
images, lms = get_landmark_from_tensors(data, predictor)
|
102 |
+
|
103 |
+
imgs = []
|
104 |
+
for num_img, lm in enumerate(lms):
|
105 |
+
lm_chin = lm[0: 17] # left-right
|
106 |
+
lm_eyebrow_left = lm[17: 22] # left-right
|
107 |
+
lm_eyebrow_right = lm[22: 27] # left-right
|
108 |
+
lm_nose = lm[27: 31] # top-down
|
109 |
+
lm_nostrils = lm[31: 36] # top-down
|
110 |
+
lm_eye_left = lm[36: 42] # left-clockwise
|
111 |
+
lm_eye_right = lm[42: 48] # left-clockwise
|
112 |
+
lm_mouth_outer = lm[48: 60] # left-clockwise
|
113 |
+
lm_mouth_inner = lm[60: 68] # left-clockwise
|
114 |
+
|
115 |
+
# Calculate auxiliary vectors.
|
116 |
+
eye_left = np.mean(lm_eye_left, axis=0)
|
117 |
+
eye_right = np.mean(lm_eye_right, axis=0)
|
118 |
+
eye_avg = (eye_left + eye_right) * 0.5
|
119 |
+
eye_to_eye = eye_right - eye_left
|
120 |
+
mouth_left = lm_mouth_outer[0]
|
121 |
+
mouth_right = lm_mouth_outer[6]
|
122 |
+
mouth_avg = (mouth_left + mouth_right) * 0.5
|
123 |
+
eye_to_mouth = mouth_avg - eye_avg
|
124 |
+
|
125 |
+
# Choose oriented crop rectangle.
|
126 |
+
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
127 |
+
x /= np.hypot(*x)
|
128 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
129 |
+
y = np.flipud(x) * [-1, 1]
|
130 |
+
c = eye_avg + eye_to_mouth * 0.1
|
131 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
132 |
+
qsize = np.hypot(*x) * 2
|
133 |
+
|
134 |
+
# read image
|
135 |
+
if is_filepath:
|
136 |
+
img = PIL.Image.open(data)
|
137 |
+
else:
|
138 |
+
img = images[num_img]
|
139 |
+
|
140 |
+
output_size = 1024
|
141 |
+
# output_size = 256
|
142 |
+
transform_size = 4096
|
143 |
+
enable_padding = True
|
144 |
+
|
145 |
+
# Shrink.
|
146 |
+
shrink = int(np.floor(qsize / output_size * 0.5))
|
147 |
+
if shrink > 1:
|
148 |
+
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
149 |
+
img = img.resize(rsize, PIL.Image.ANTIALIAS)
|
150 |
+
quad /= shrink
|
151 |
+
qsize /= shrink
|
152 |
+
|
153 |
+
# Crop.
|
154 |
+
border = max(int(np.rint(qsize * 0.1)), 3)
|
155 |
+
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
156 |
+
int(np.ceil(max(quad[:, 1]))))
|
157 |
+
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
|
158 |
+
min(crop[3] + border, img.size[1]))
|
159 |
+
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
160 |
+
img = img.crop(crop)
|
161 |
+
quad -= crop[0:2]
|
162 |
+
|
163 |
+
# Pad.
|
164 |
+
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
165 |
+
int(np.ceil(max(quad[:, 1]))))
|
166 |
+
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
|
167 |
+
max(pad[3] - img.size[1] + border, 0))
|
168 |
+
if enable_padding and max(pad) > border - 4:
|
169 |
+
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
170 |
+
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
171 |
+
h, w, _ = img.shape
|
172 |
+
y, x, _ = np.ogrid[:h, :w, :1]
|
173 |
+
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
|
174 |
+
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
|
175 |
+
blur = qsize * 0.02
|
176 |
+
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
177 |
+
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
|
178 |
+
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
|
179 |
+
quad += pad[:2]
|
180 |
+
|
181 |
+
# Transform.
|
182 |
+
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(),
|
183 |
+
PIL.Image.BILINEAR)
|
184 |
+
if output_size < transform_size:
|
185 |
+
img = img.resize((output_size, output_size), PIL.Image.LANCZOS)
|
186 |
+
|
187 |
+
# Save aligned image.
|
188 |
+
imgs.append(img)
|
189 |
+
|
190 |
+
if return_tensors:
|
191 |
+
transform = T.ToTensor()
|
192 |
+
tensors = [transform(img).clamp(0, 1) for img in imgs]
|
193 |
+
return tensors
|
194 |
+
return imgs
|