from PIL import Image import gradio as gr import torch, os, random from accelerate import Accelerator from transformers import pipeline from diffusers.utils import load_image from diffusers import DiffusionPipeline, DDPMScheduler from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS accelerator = Accelerator(cpu=True) warp_prior = accelerator.prepare(WuerstchenPriorPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=torch.float32, use_safetensors=True, safety_cheker=None)) ###warp_prior.scheduler = DDPMWuerstchenScheduler.from_config(warp_prior.scheduler.config) warp_prior = warp_prior.to("cpu") warp = accelerator.prepare(WuerstchenDecoderPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.float32, use_safetensors=True, safety_checker=None)) ###warp.scheduler = DDPMWuerstchenScheduler.from_config(warp.scheduler.config) warp = warp.to("cpu") generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4876364)) apol=[] def plex(cook, one, two): apol=[] ###goof = load_image(img).resize((512, 512)) negative_prompt = "lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature" warp_out = warp_prior(prompt=cook, height=512,width=512,negative_prompt=negative_prompt,guidance_scale=two,timestep=DEFAULT_STAGE_C_TIMESTEPS,num_inference_steps=one) primpt = "" imas = warp(image_embeddings=warp_out.image_embeddings, height=512, width=512, num_inference_steps=one, timestep=DEFAULT_STAGE_C_TIMESTEPS,prompt=cook,negative_prompt=primpt,guidance_scale=0.0,output_type="pil") for i, igs in enumerate(imas["images"]): apol.append(igs) return apol iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="prompt"), gr.Slider(label="Inference steps",minimum=1,step=1,maximum=10,value=5), gr.Slider(label="Prior guidance scale",minimum=4.1,step=0.1,maximum=19.9,value=4.1)],outputs=gr.Gallery(label="Generated Output Image",columns=2), title="Txt2Img Wrstchn SD", description="Very slow! Running on cpu. By JoPmt.") iface.queue(max_size=1,api_open=False) iface.launch(max_threads=1)