import os import re from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import DirectoryLoader, PyPDFLoader from langchain.vectorstores import Chroma from langchain.embeddings import SentenceTransformerEmbeddings from langchain.prompts import PromptTemplate from langchain.llms import HuggingFaceHub from langchain.chains import RetrievalQA from config import HUGGINGFACEHUB_API_TOKEN from transformers import pipeline os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN # Vous pouvez choisir parmi les nombreux midèles disponibles sur HugginFace (https://huggingface.co/models) model_name = "llmware/industry-bert-insurance-v0.1" def remove_special_characters(string): return re.sub(r"\n", " ", string) def RAG_Langchain(query): embeddings = SentenceTransformerEmbeddings(model_name=model_name) repo_id = "llmware/bling-sheared-llama-1.3b-0.1" loader = DirectoryLoader('data/', glob="**/*.pdf", show_progress=True, loader_cls=PyPDFLoader) documents = loader.load() # La taille des chunks est un paramètre important pour la qualité de l'information retrouvée. Il existe plusieurs méthodes # pour en choisir la valeur. # L'overlap correspond au nombre de caractères partagés entre un chunk et le chunk suivant text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) texts = text_splitter.split_documents(documents) chunk = texts[0] chunk.page_content = remove_special_characters(chunk.page_content) #Data Preparation for chunks in texts: chunks.page_content = remove_special_characters(chunks.page_content) # On charge tous les documents dans la base de données vectorielle, pour les utiliser ensuite vector_stores=Chroma.from_documents(texts, embeddings, collection_metadata = {"hnsw:space": "cosine"}, persist_directory="stores/insurance_cosine") #Retrieval load_vector_store=Chroma(persist_directory="stores/insurance_cosine", embedding_function=embeddings) #On prend pour l'instant k=1, on verra plus tard comment sélectionner les résultats de contexte docs = load_vector_store.similarity_search_with_score(query=query, k=1) results = {"Score":[],"Content":[],"Metadata":[]}; for i in docs: doc, score = i #print({"Score":score, "Content":doc.page_content, "Metadata":doc.metadata}) results['Score'].append(score) results['Content'].append(doc.page_content) results['Metadata'].append(doc.metadata) context = results['Content'] return results def generateResponseBasedOnContext(model_name, context_string, query): question_answerer = pipeline("question-answering", model=model_name) context_prompt = "You are a sports expert. Answer the user's question by using following context: " context = context_prompt + context_string print("context : ", context) result = question_answerer(question=query, context=context) return result['answer'] def gradio_adapted_RAG(model_name, query): context = str(RAG_Langchain(query)['Content']) generated_answer = generateResponseBasedOnContext(str(model_name), context, query) return generated_answer