Spaces:
Runtime error
Runtime error
JinHyeong99
commited on
Commit
Β·
9c81346
1
Parent(s):
a36cae8
- app.py +107 -48
- config.json +0 -372
- image1.jpg +0 -0
- image2.jpg +0 -0
- image3.jpg +0 -0
- labels.txt +19 -0
- preprocessor_config.json +0 -18
- pytorch_model.bin +0 -3
- tf_model.h5 +0 -3
app.py
CHANGED
@@ -1,52 +1,111 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from
|
|
|
4 |
import numpy as np
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
""
|
14 |
-
np.random.seed(42) # μ¬νμ±μ μν μλ μ€μ
|
15 |
-
return {i: np.random.randint(0, 256, 3) for i in range(num_classes)}
|
16 |
-
|
17 |
-
def segment_image(image):
|
18 |
-
# μ΄λ―Έμ§ μ²λ¦¬
|
19 |
-
image = image.resize(512,512)
|
20 |
-
inputs = feature_extractor(images=image, return_tensors="pt")
|
21 |
-
with torch.no_grad():
|
22 |
-
outputs = model(**inputs)
|
23 |
-
|
24 |
-
# λ§μ€ν¬ μμ±
|
25 |
-
upsampled_logits = torch.nn.functional.interpolate(
|
26 |
-
outputs.logits, size=image.size[::-1], mode="bilinear", align_corners=False
|
27 |
-
)
|
28 |
-
upsampled_predictions = upsampled_logits.argmax(dim=1)
|
29 |
-
mask = upsampled_predictions.squeeze().numpy()
|
30 |
-
|
31 |
-
# μμ 맀ν
|
32 |
-
color_map = create_color_map(150) # ADE20Kμλ μ½ 150κ°μ ν΄λμ€κ° μμ
|
33 |
-
colored_mask = np.array([color_map[class_id] for class_id in mask.flatten()]).reshape(mask.shape + (3,))
|
34 |
-
|
35 |
-
# κ²°κ³Ό λ°ν
|
36 |
-
return Image.fromarray(colored_mask.astype(np.uint8))
|
37 |
-
|
38 |
-
# μμ μ΄λ―Έμ§ κ²½λ‘
|
39 |
-
example_images = ["image1.jpg", "image2.jpg", "image3.jpg"]
|
40 |
-
|
41 |
-
# Gradio μΈν°νμ΄μ€ μ€μ
|
42 |
-
iface = gr.Interface(
|
43 |
-
fn=segment_image,
|
44 |
-
inputs=gr.inputs.Image(type="pil"),
|
45 |
-
outputs="image",
|
46 |
-
title="Image Segmentation with SegFormer",
|
47 |
-
description="Upload an image to segment it using SegFormer model.",
|
48 |
-
examples=example_images
|
49 |
)
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
|
3 |
+
from matplotlib import gridspec
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import tensorflow as tf
|
8 |
+
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
9 |
+
|
10 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
+
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
|
12 |
+
)
|
13 |
+
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
14 |
+
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
)
|
16 |
|
17 |
+
def ade_palette():
|
18 |
+
"""ADE20K palette that maps each class to RGB values."""
|
19 |
+
return [
|
20 |
+
[255,0,0], #λΉ¨κ°
|
21 |
+
[255,228,0], #λ
Έλ
|
22 |
+
[171,242,0], # μ°λ
|
23 |
+
[0,216,255], #νλ
|
24 |
+
[0,0,255], #νλ
|
25 |
+
[255,0,221], #νν¬
|
26 |
+
[116,116,116], #νμ
|
27 |
+
[95,0,255], #보λΌ
|
28 |
+
[255,94,0], #μ£Όν©
|
29 |
+
[71,200,62], #μ΄λ‘
|
30 |
+
[153,0,76], #λ§μ ν
|
31 |
+
[67,116,217], #μ 맀ννλ + νλ
|
32 |
+
[153,112,0], #겨μ
|
33 |
+
[87,129,0], #λ
Ήμ
|
34 |
+
[255,169,169], #λΆνλΆν
|
35 |
+
[35,30,183], #μ΄λμ΄ νλ
|
36 |
+
[225,186,133], #μ΄μ
|
37 |
+
[206,251,201], #μ°νμ΄λ‘
|
38 |
+
[165,102,255] #μ 맀ν 보λΌ
|
39 |
+
]
|
40 |
+
|
41 |
+
labels_list = []
|
42 |
+
|
43 |
+
with open(r'labels.txt', 'r') as fp:
|
44 |
+
for line in fp:
|
45 |
+
labels_list.append(line[:-1])
|
46 |
+
|
47 |
+
colormap = np.asarray(ade_palette())
|
48 |
+
|
49 |
+
def label_to_color_image(label):
|
50 |
+
if label.ndim != 2:
|
51 |
+
raise ValueError("Expect 2-D input label")
|
52 |
+
|
53 |
+
if np.max(label) >= len(colormap):
|
54 |
+
raise ValueError("label value too large.")
|
55 |
+
return colormap[label]
|
56 |
+
|
57 |
+
def draw_plot(pred_img, seg):
|
58 |
+
fig = plt.figure(figsize=(20, 15))
|
59 |
+
|
60 |
+
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
61 |
+
|
62 |
+
plt.subplot(grid_spec[0])
|
63 |
+
plt.imshow(pred_img)
|
64 |
+
plt.axis('off')
|
65 |
+
LABEL_NAMES = np.asarray(labels_list)
|
66 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
67 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
68 |
+
|
69 |
+
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
70 |
+
ax = plt.subplot(grid_spec[1])
|
71 |
+
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
72 |
+
ax.yaxis.tick_right()
|
73 |
+
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
74 |
+
plt.xticks([], [])
|
75 |
+
ax.tick_params(width=0.0, labelsize=25)
|
76 |
+
return fig
|
77 |
+
|
78 |
+
def sepia(input_img):
|
79 |
+
input_img = Image.fromarray(input_img)
|
80 |
+
|
81 |
+
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
82 |
+
outputs = model(**inputs)
|
83 |
+
logits = outputs.logits
|
84 |
+
|
85 |
+
logits = tf.transpose(logits, [0, 2, 3, 1])
|
86 |
+
logits = tf.image.resize(
|
87 |
+
logits, input_img.size[::-1]
|
88 |
+
) # We reverse the shape of `image` because `image.size` returns width and height.
|
89 |
+
seg = tf.math.argmax(logits, axis=-1)[0]
|
90 |
+
|
91 |
+
color_seg = np.zeros(
|
92 |
+
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
93 |
+
) # height, width, 3
|
94 |
+
for label, color in enumerate(colormap):
|
95 |
+
color_seg[seg.numpy() == label, :] = color
|
96 |
+
|
97 |
+
# Show image + mask
|
98 |
+
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
99 |
+
pred_img = pred_img.astype(np.uint8)
|
100 |
+
|
101 |
+
fig = draw_plot(pred_img, seg)
|
102 |
+
return fig
|
103 |
+
|
104 |
+
demo = gr.Interface(fn=sepia,
|
105 |
+
inputs=gr.Image(shape=(400, 600)),
|
106 |
+
outputs=['plot'],
|
107 |
+
examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg"],
|
108 |
+
allow_flagging='never')
|
109 |
+
|
110 |
+
|
111 |
+
demo.launch()
|
config.json
DELETED
@@ -1,372 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"SegformerForSemanticSegmentation"
|
4 |
-
],
|
5 |
-
"attention_probs_dropout_prob": 0.0,
|
6 |
-
"classifier_dropout_prob": 0.1,
|
7 |
-
"decoder_hidden_size": 256,
|
8 |
-
"depths": [
|
9 |
-
2,
|
10 |
-
2,
|
11 |
-
2,
|
12 |
-
2
|
13 |
-
],
|
14 |
-
"downsampling_rates": [
|
15 |
-
1,
|
16 |
-
4,
|
17 |
-
8,
|
18 |
-
16
|
19 |
-
],
|
20 |
-
"drop_path_rate": 0.1,
|
21 |
-
"hidden_act": "gelu",
|
22 |
-
"hidden_dropout_prob": 0.0,
|
23 |
-
"hidden_sizes": [
|
24 |
-
32,
|
25 |
-
64,
|
26 |
-
160,
|
27 |
-
256
|
28 |
-
],
|
29 |
-
"id2label": {
|
30 |
-
"0": "wall",
|
31 |
-
"1": "building",
|
32 |
-
"2": "sky",
|
33 |
-
"3": "floor",
|
34 |
-
"4": "tree",
|
35 |
-
"5": "ceiling",
|
36 |
-
"6": "road",
|
37 |
-
"7": "bed ",
|
38 |
-
"8": "windowpane",
|
39 |
-
"9": "grass",
|
40 |
-
"10": "cabinet",
|
41 |
-
"11": "sidewalk",
|
42 |
-
"12": "person",
|
43 |
-
"13": "earth",
|
44 |
-
"14": "door",
|
45 |
-
"15": "table",
|
46 |
-
"16": "mountain",
|
47 |
-
"17": "plant",
|
48 |
-
"18": "curtain",
|
49 |
-
"19": "chair",
|
50 |
-
"20": "car",
|
51 |
-
"21": "water",
|
52 |
-
"22": "painting",
|
53 |
-
"23": "sofa",
|
54 |
-
"24": "shelf",
|
55 |
-
"25": "house",
|
56 |
-
"26": "sea",
|
57 |
-
"27": "mirror",
|
58 |
-
"28": "rug",
|
59 |
-
"29": "field",
|
60 |
-
"30": "armchair",
|
61 |
-
"31": "seat",
|
62 |
-
"32": "fence",
|
63 |
-
"33": "desk",
|
64 |
-
"34": "rock",
|
65 |
-
"35": "wardrobe",
|
66 |
-
"36": "lamp",
|
67 |
-
"37": "bathtub",
|
68 |
-
"38": "railing",
|
69 |
-
"39": "cushion",
|
70 |
-
"40": "base",
|
71 |
-
"41": "box",
|
72 |
-
"42": "column",
|
73 |
-
"43": "signboard",
|
74 |
-
"44": "chest of drawers",
|
75 |
-
"45": "counter",
|
76 |
-
"46": "sand",
|
77 |
-
"47": "sink",
|
78 |
-
"48": "skyscraper",
|
79 |
-
"49": "fireplace",
|
80 |
-
"50": "refrigerator",
|
81 |
-
"51": "grandstand",
|
82 |
-
"52": "path",
|
83 |
-
"53": "stairs",
|
84 |
-
"54": "runway",
|
85 |
-
"55": "case",
|
86 |
-
"56": "pool table",
|
87 |
-
"57": "pillow",
|
88 |
-
"58": "screen door",
|
89 |
-
"59": "stairway",
|
90 |
-
"60": "river",
|
91 |
-
"61": "bridge",
|
92 |
-
"62": "bookcase",
|
93 |
-
"63": "blind",
|
94 |
-
"64": "coffee table",
|
95 |
-
"65": "toilet",
|
96 |
-
"66": "flower",
|
97 |
-
"67": "book",
|
98 |
-
"68": "hill",
|
99 |
-
"69": "bench",
|
100 |
-
"70": "countertop",
|
101 |
-
"71": "stove",
|
102 |
-
"72": "palm",
|
103 |
-
"73": "kitchen island",
|
104 |
-
"74": "computer",
|
105 |
-
"75": "swivel chair",
|
106 |
-
"76": "boat",
|
107 |
-
"77": "bar",
|
108 |
-
"78": "arcade machine",
|
109 |
-
"79": "hovel",
|
110 |
-
"80": "bus",
|
111 |
-
"81": "towel",
|
112 |
-
"82": "light",
|
113 |
-
"83": "truck",
|
114 |
-
"84": "tower",
|
115 |
-
"85": "chandelier",
|
116 |
-
"86": "awning",
|
117 |
-
"87": "streetlight",
|
118 |
-
"88": "booth",
|
119 |
-
"89": "television receiver",
|
120 |
-
"90": "airplane",
|
121 |
-
"91": "dirt track",
|
122 |
-
"92": "apparel",
|
123 |
-
"93": "pole",
|
124 |
-
"94": "land",
|
125 |
-
"95": "bannister",
|
126 |
-
"96": "escalator",
|
127 |
-
"97": "ottoman",
|
128 |
-
"98": "bottle",
|
129 |
-
"99": "buffet",
|
130 |
-
"100": "poster",
|
131 |
-
"101": "stage",
|
132 |
-
"102": "van",
|
133 |
-
"103": "ship",
|
134 |
-
"104": "fountain",
|
135 |
-
"105": "conveyer belt",
|
136 |
-
"106": "canopy",
|
137 |
-
"107": "washer",
|
138 |
-
"108": "plaything",
|
139 |
-
"109": "swimming pool",
|
140 |
-
"110": "stool",
|
141 |
-
"111": "barrel",
|
142 |
-
"112": "basket",
|
143 |
-
"113": "waterfall",
|
144 |
-
"114": "tent",
|
145 |
-
"115": "bag",
|
146 |
-
"116": "minibike",
|
147 |
-
"117": "cradle",
|
148 |
-
"118": "oven",
|
149 |
-
"119": "ball",
|
150 |
-
"120": "food",
|
151 |
-
"121": "step",
|
152 |
-
"122": "tank",
|
153 |
-
"123": "trade name",
|
154 |
-
"124": "microwave",
|
155 |
-
"125": "pot",
|
156 |
-
"126": "animal",
|
157 |
-
"127": "bicycle",
|
158 |
-
"128": "lake",
|
159 |
-
"129": "dishwasher",
|
160 |
-
"130": "screen",
|
161 |
-
"131": "blanket",
|
162 |
-
"132": "sculpture",
|
163 |
-
"133": "hood",
|
164 |
-
"134": "sconce",
|
165 |
-
"135": "vase",
|
166 |
-
"136": "traffic light",
|
167 |
-
"137": "tray",
|
168 |
-
"138": "ashcan",
|
169 |
-
"139": "fan",
|
170 |
-
"140": "pier",
|
171 |
-
"141": "crt screen",
|
172 |
-
"142": "plate",
|
173 |
-
"143": "monitor",
|
174 |
-
"144": "bulletin board",
|
175 |
-
"145": "shower",
|
176 |
-
"146": "radiator",
|
177 |
-
"147": "glass",
|
178 |
-
"148": "clock",
|
179 |
-
"149": "flag"
|
180 |
-
},
|
181 |
-
"image_size": 224,
|
182 |
-
"initializer_range": 0.02,
|
183 |
-
"label2id": {
|
184 |
-
"airplane": 90,
|
185 |
-
"animal": 126,
|
186 |
-
"apparel": 92,
|
187 |
-
"arcade machine": 78,
|
188 |
-
"armchair": 30,
|
189 |
-
"ashcan": 138,
|
190 |
-
"awning": 86,
|
191 |
-
"bag": 115,
|
192 |
-
"ball": 119,
|
193 |
-
"bannister": 95,
|
194 |
-
"bar": 77,
|
195 |
-
"barrel": 111,
|
196 |
-
"base": 40,
|
197 |
-
"basket": 112,
|
198 |
-
"bathtub": 37,
|
199 |
-
"bed ": 7,
|
200 |
-
"bench": 69,
|
201 |
-
"bicycle": 127,
|
202 |
-
"blanket": 131,
|
203 |
-
"blind": 63,
|
204 |
-
"boat": 76,
|
205 |
-
"book": 67,
|
206 |
-
"bookcase": 62,
|
207 |
-
"booth": 88,
|
208 |
-
"bottle": 98,
|
209 |
-
"box": 41,
|
210 |
-
"bridge": 61,
|
211 |
-
"buffet": 99,
|
212 |
-
"building": 1,
|
213 |
-
"bulletin board": 144,
|
214 |
-
"bus": 80,
|
215 |
-
"cabinet": 10,
|
216 |
-
"canopy": 106,
|
217 |
-
"car": 20,
|
218 |
-
"case": 55,
|
219 |
-
"ceiling": 5,
|
220 |
-
"chair": 19,
|
221 |
-
"chandelier": 85,
|
222 |
-
"chest of drawers": 44,
|
223 |
-
"clock": 148,
|
224 |
-
"coffee table": 64,
|
225 |
-
"column": 42,
|
226 |
-
"computer": 74,
|
227 |
-
"conveyer belt": 105,
|
228 |
-
"counter": 45,
|
229 |
-
"countertop": 70,
|
230 |
-
"cradle": 117,
|
231 |
-
"crt screen": 141,
|
232 |
-
"curtain": 18,
|
233 |
-
"cushion": 39,
|
234 |
-
"desk": 33,
|
235 |
-
"dirt track": 91,
|
236 |
-
"dishwasher": 129,
|
237 |
-
"door": 14,
|
238 |
-
"earth": 13,
|
239 |
-
"escalator": 96,
|
240 |
-
"fan": 139,
|
241 |
-
"fence": 32,
|
242 |
-
"field": 29,
|
243 |
-
"fireplace": 49,
|
244 |
-
"flag": 149,
|
245 |
-
"floor": 3,
|
246 |
-
"flower": 66,
|
247 |
-
"food": 120,
|
248 |
-
"fountain": 104,
|
249 |
-
"glass": 147,
|
250 |
-
"grandstand": 51,
|
251 |
-
"grass": 9,
|
252 |
-
"hill": 68,
|
253 |
-
"hood": 133,
|
254 |
-
"house": 25,
|
255 |
-
"hovel": 79,
|
256 |
-
"kitchen island": 73,
|
257 |
-
"lake": 128,
|
258 |
-
"lamp": 36,
|
259 |
-
"land": 94,
|
260 |
-
"light": 82,
|
261 |
-
"microwave": 124,
|
262 |
-
"minibike": 116,
|
263 |
-
"mirror": 27,
|
264 |
-
"monitor": 143,
|
265 |
-
"mountain": 16,
|
266 |
-
"ottoman": 97,
|
267 |
-
"oven": 118,
|
268 |
-
"painting": 22,
|
269 |
-
"palm": 72,
|
270 |
-
"path": 52,
|
271 |
-
"person": 12,
|
272 |
-
"pier": 140,
|
273 |
-
"pillow": 57,
|
274 |
-
"plant": 17,
|
275 |
-
"plate": 142,
|
276 |
-
"plaything": 108,
|
277 |
-
"pole": 93,
|
278 |
-
"pool table": 56,
|
279 |
-
"poster": 100,
|
280 |
-
"pot": 125,
|
281 |
-
"radiator": 146,
|
282 |
-
"railing": 38,
|
283 |
-
"refrigerator": 50,
|
284 |
-
"river": 60,
|
285 |
-
"road": 6,
|
286 |
-
"rock": 34,
|
287 |
-
"rug": 28,
|
288 |
-
"runway": 54,
|
289 |
-
"sand": 46,
|
290 |
-
"sconce": 134,
|
291 |
-
"screen": 130,
|
292 |
-
"screen door": 58,
|
293 |
-
"sculpture": 132,
|
294 |
-
"sea": 26,
|
295 |
-
"seat": 31,
|
296 |
-
"shelf": 24,
|
297 |
-
"ship": 103,
|
298 |
-
"shower": 145,
|
299 |
-
"sidewalk": 11,
|
300 |
-
"signboard": 43,
|
301 |
-
"sink": 47,
|
302 |
-
"sky": 2,
|
303 |
-
"skyscraper": 48,
|
304 |
-
"sofa": 23,
|
305 |
-
"stage": 101,
|
306 |
-
"stairs": 53,
|
307 |
-
"stairway": 59,
|
308 |
-
"step": 121,
|
309 |
-
"stool": 110,
|
310 |
-
"stove": 71,
|
311 |
-
"streetlight": 87,
|
312 |
-
"swimming pool": 109,
|
313 |
-
"swivel chair": 75,
|
314 |
-
"table": 15,
|
315 |
-
"tank": 122,
|
316 |
-
"television receiver": 89,
|
317 |
-
"tent": 114,
|
318 |
-
"toilet": 65,
|
319 |
-
"towel": 81,
|
320 |
-
"tower": 84,
|
321 |
-
"trade name": 123,
|
322 |
-
"traffic light": 136,
|
323 |
-
"tray": 137,
|
324 |
-
"tree": 4,
|
325 |
-
"truck": 83,
|
326 |
-
"van": 102,
|
327 |
-
"vase": 135,
|
328 |
-
"wall": 0,
|
329 |
-
"wardrobe": 35,
|
330 |
-
"washer": 107,
|
331 |
-
"water": 21,
|
332 |
-
"waterfall": 113,
|
333 |
-
"windowpane": 8
|
334 |
-
},
|
335 |
-
"layer_norm_eps": 1e-06,
|
336 |
-
"mlp_ratios": [
|
337 |
-
4,
|
338 |
-
4,
|
339 |
-
4,
|
340 |
-
4
|
341 |
-
],
|
342 |
-
"model_type": "segformer",
|
343 |
-
"num_attention_heads": [
|
344 |
-
1,
|
345 |
-
2,
|
346 |
-
5,
|
347 |
-
8
|
348 |
-
],
|
349 |
-
"num_channels": 3,
|
350 |
-
"num_encoder_blocks": 4,
|
351 |
-
"patch_sizes": [
|
352 |
-
7,
|
353 |
-
3,
|
354 |
-
3,
|
355 |
-
3
|
356 |
-
],
|
357 |
-
"reshape_last_stage": true,
|
358 |
-
"sr_ratios": [
|
359 |
-
8,
|
360 |
-
4,
|
361 |
-
2,
|
362 |
-
1
|
363 |
-
],
|
364 |
-
"strides": [
|
365 |
-
4,
|
366 |
-
2,
|
367 |
-
2,
|
368 |
-
2
|
369 |
-
],
|
370 |
-
"torch_dtype": "float32",
|
371 |
-
"transformers_version": "4.12.0.dev0"
|
372 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image1.jpg
DELETED
Binary file (89.1 kB)
|
|
image2.jpg
DELETED
Binary file (877 kB)
|
|
image3.jpg
DELETED
Binary file (956 kB)
|
|
labels.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
road
|
2 |
+
sidewalk
|
3 |
+
building
|
4 |
+
wall
|
5 |
+
fence
|
6 |
+
pole
|
7 |
+
traffic light
|
8 |
+
traffic sign
|
9 |
+
vegetation
|
10 |
+
terrain
|
11 |
+
sky
|
12 |
+
person
|
13 |
+
rider
|
14 |
+
car
|
15 |
+
truck
|
16 |
+
bus
|
17 |
+
train
|
18 |
+
motorcycle
|
19 |
+
bicycle
|
preprocessor_config.json
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"do_normalize": true,
|
3 |
-
"do_resize": true,
|
4 |
-
"feature_extractor_type": "SegformerFeatureExtractor",
|
5 |
-
"image_mean": [
|
6 |
-
0.485,
|
7 |
-
0.456,
|
8 |
-
0.406
|
9 |
-
],
|
10 |
-
"image_std": [
|
11 |
-
0.229,
|
12 |
-
0.224,
|
13 |
-
0.225
|
14 |
-
],
|
15 |
-
"reduce_labels": true,
|
16 |
-
"resample": 2,
|
17 |
-
"size": 512
|
18 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pytorch_model.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0f4df97633cbedd558ecffa3ad228ace5af37e082678390b45a9d22745787c61
|
3 |
-
size 15092257
|
|
|
|
|
|
|
|
tf_model.h5
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d38f99e2a8e73bbdb4635669be5bfcbbfc85b4b5c1ac75d36b47312c7fc5d06e
|
3 |
-
size 15285696
|
|
|
|
|
|
|
|