# ------------------------------------------ # TextDiffuser: Diffusion Models as Text Painters # Paper Link: https://arxiv.org/abs/2305.10855 # Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser # Copyright (c) Microsoft Corporation. # This file provides the inference script. # ------------------------------------------ import os import re import zipfile if not os.path.exists('textdiffuser-ckpt'): os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/textdiffuser-ckpt-new.zip') with zipfile.ZipFile('textdiffuser-ckpt-new.zip', 'r') as zip_ref: zip_ref.extractall('.') if not os.path.exists('images'): os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/images.zip') with zipfile.ZipFile('images.zip', 'r') as zip_ref: zip_ref.extractall('.') os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/404.jpg') if not os.path.exists('Arial.ttf'): os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/Arial.ttf') import cv2 import random import logging import argparse import numpy as np from pathlib import Path from tqdm.auto import tqdm from typing import Optional from packaging import version from termcolor import colored from PIL import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance # import for visualization from huggingface_hub import HfFolder, Repository, create_repo, whoami import datasets from datasets import load_dataset from datasets import disable_caching import torch import torch.utils.checkpoint import torch.nn.functional as F import accelerate from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel from diffusers.utils import check_min_version, deprecate from diffusers.utils.import_utils import is_xformers_available import transformers from transformers import CLIPTextModel, CLIPTokenizer from util import segmentation_mask_visualization, make_caption_pil, combine_image, transform_mask_pil, filter_segmentation_mask, inpainting_merge_image from model.layout_generator import get_layout_from_prompt from model.text_segmenter.unet import UNet disable_caching() check_min_version("0.15.0.dev0") logger = get_logger(__name__, log_level="INFO") def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default='runwayml/stable-diffusion-v1-5', # no need to modify this help="Path to pretrained model or model identifier from huggingface.co/models. Please do not modify this.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--mode", type=str, default="text-to-image", # required=True, choices=["text-to-image", "text-to-image-with-template", "text-inpainting"], help="Three modes can be used.", ) parser.add_argument( "--prompt", type=str, default="", # required=True, help="The text prompts provided by users.", ) parser.add_argument( "--template_image", type=str, default="", help="The template image should be given when using 【text-to-image-with-template】 mode.", ) parser.add_argument( "--original_image", type=str, default="", help="The original image should be given when using 【text-inpainting】 mode.", ) parser.add_argument( "--text_mask", type=str, default="", help="The text mask should be given when using 【text-inpainting】 mode.", ) parser.add_argument( "--output_dir", type=str, default="output", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--seed", type=int, default=None, help="A seed for reproducible training." ) parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--classifier_free_scale", type=float, default=7.5, # following stable diffusion (https://github.com/CompVis/stable-diffusion) help="Classifier free scale following https://arxiv.org/abs/2207.12598.", ) parser.add_argument( "--drop_caption", action="store_true", help="Whether to drop captions during training following https://arxiv.org/abs/2207.12598.." ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub." ) parser.add_argument( "--hub_token", type=str, default=None, help="The token to use to push to the Model Hub." ) parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default='fp16', choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--local_rank", type=int, default=-1, help="For distributed training: local_rank" ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=5, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default='textdiffuser-ckpt/diffusion_backbone', # should be specified during inference help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--font_path", type=str, default='Arial.ttf', help="The path of font for visualization." ) parser.add_argument( "--sample_steps", type=int, default=50, # following stable diffusion (https://github.com/CompVis/stable-diffusion) help="Diffusion steps for sampling." ) parser.add_argument( "--vis_num", type=int, default=4, # please decreases the number if out-of-memory error occurs help="Number of images to be sample. Please decrease it when encountering out of memory error." ) parser.add_argument( "--binarization", action="store_true", help="Whether to binarize the template image." ) parser.add_argument( "--use_pillow_segmentation_mask", type=bool, default=True, help="In the 【text-to-image】 mode, please specify whether to use the segmentation masks provided by PILLOW" ) parser.add_argument( "--character_segmenter_path", type=str, default='textdiffuser-ckpt/text_segmenter.pth', help="checkpoint of character-level segmenter" ) args = parser.parse_args() print(f'{colored("[√]", "green")} Arguments are loaded.') print(args) env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank return args def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): if token is None: token = HfFolder.get_token() if organization is None: username = whoami(token)["name"] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) print(f'{colored("[√]", "green")} Logging dir is set to {logging_dir}.') accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit) accelerator = Accelerator( gradient_accumulation_steps=1, mixed_precision=args.mixed_precision, log_with=args.report_to, logging_dir=logging_dir, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id create_repo(repo_name, exist_ok=True, token=args.hub_token) repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) print(args.output_dir) # Load scheduler, tokenizer and models. tokenizer15 = CLIPTokenizer.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder="tokenizer", revision=args.revision ) tokenizer21 = CLIPTokenizer.from_pretrained( 'stabilityai/stable-diffusion-2-1', subfolder="tokenizer", revision=args.revision ) text_encoder15 = CLIPTextModel.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder="text_encoder", revision=args.revision ) text_encoder21 = CLIPTextModel.from_pretrained( 'stabilityai/stable-diffusion-2-1', subfolder="text_encoder", revision=args.revision ) vae15 = AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="vae", revision=args.revision).cuda() unet15 = UNet2DConditionModel.from_pretrained( './textdiffuser-ckpt/diffusion_backbone_1.5', subfolder="unet", revision=None ).cuda() vae21 = AutoencoderKL.from_pretrained('stabilityai/stable-diffusion-2-1', subfolder="vae", revision=args.revision).cuda() unet21 = UNet2DConditionModel.from_pretrained( './textdiffuser-ckpt/diffusion_backbone_2.1', subfolder="unet", revision=None ).cuda() scheduler15 = DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="scheduler") scheduler21 = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-2-1', subfolder="scheduler") # Freeze vae and text_encoder vae15.requires_grad_(False) vae21.requires_grad_(False) text_encoder15.requires_grad_(False) text_encoder21.requires_grad_(False) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # setup schedulers # sample_num = args.vis_num def to_tensor(image): if isinstance(image, Image.Image): image = np.array(image) elif not isinstance(image, np.ndarray): raise TypeError("Error") image = image.astype(np.float32) / 255.0 image = np.transpose(image, (2, 0, 1)) tensor = torch.from_numpy(image) return tensor import unicodedata def full2half(text): half = [] for char in text: code = ord(char) if code == 0x3000: half.append(chr(0x0020)) elif 0xFF01 <= code <= 0xFF5E: half.append(chr(code - 0xFEE0)) else: half.append(char) return ''.join(half) def has_chinese_char(string): pattern = re.compile('[\u4e00-\u9fa5]') if pattern.search(string): return True else: return False image_404 = Image.open('404.jpg') def text_to_image(prompt,slider_step,slider_guidance,slider_batch, version): print(f'【version】{version}') if version == 'Stable Diffusion v2.1': vae = vae21 unet = unet21 text_encoder = text_encoder21 tokenizer = tokenizer21 scheduler = scheduler21 slider_batch = min(slider_batch, 2) size = 768 elif version == 'Stable Diffusion v1.5': vae = vae15 unet = unet15 text_encoder = text_encoder15 tokenizer = tokenizer15 scheduler = scheduler15 size = 512 else: assert False, 'Version Not Found' if has_chinese_char(prompt): print('trigger') return image_404, None prompt = full2half(prompt) prompt = prompt.replace('"', "'") prompt = prompt.replace('‘', "'") prompt = prompt.replace('’', "'") prompt = prompt.replace('“', "'") prompt = prompt.replace('”', "'") prompt = re.sub(r"[^a-zA-Z0-9'\" ]+", "", prompt) if slider_step>=50: slider_step = 50 args.prompt = prompt sample_num = slider_batch seed = random.randint(0, 10000000) set_seed(seed) scheduler.set_timesteps(slider_step) noise = torch.randn((sample_num, 4, size//8, size//8)).to("cuda") # (b, 4, 64, 64) input = noise # (b, 4, 64, 64) captions = [args.prompt] * sample_num captions_nocond = [""] * sample_num print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.') # encode text prompts inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids # (b, 77) encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768) print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.') inputs_nocond = tokenizer( captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids # (b, 77) encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768) print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.') #### text-to-image #### render_image, segmentation_mask_from_pillow = get_layout_from_prompt(args) segmentation_mask = torch.Tensor(np.array(segmentation_mask_from_pillow)).cuda() # (512, 512) segmentation_mask = filter_segmentation_mask(segmentation_mask) segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(size//2, size//2), mode='nearest') segmentation_mask = segmentation_mask.squeeze(1).repeat(sample_num, 1, 1).long().to('cuda') # (1, 1, 256, 256) print(f'{colored("[√]", "green")} character-level segmentation_mask: {segmentation_mask.shape}.') feature_mask = torch.ones(sample_num, 1, size//8, size//8).to('cuda') # (b, 1, 64, 64) masked_image = torch.zeros(sample_num, 3, size, size).to('cuda') # (b, 3, 512, 512) masked_feature = vae.encode(masked_image).latent_dist.sample() # (b, 4, 64, 64) masked_feature = masked_feature * vae.config.scaling_factor print(f'{colored("[√]", "green")} feature_mask: {feature_mask.shape}.') print(f'{colored("[√]", "green")} masked_feature: {masked_feature.shape}.') # diffusion process intermediate_images = [] for t in tqdm(scheduler.timesteps): with torch.no_grad(): noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64 noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64 noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64 prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample input = prev_noisy_sample intermediate_images.append(prev_noisy_sample) # decode and visualization input = 1 / vae.config.scaling_factor * input sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512) image_pil = render_image.resize((size,size)) segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy() character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((size,size)) character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask) character_mask_highlight_pil = character_mask_highlight_pil.resize((size, size)) caption_pil = make_caption_pil(args.font_path, captions) # save pred_img pred_image_list = [] for image in sample_images.float(): image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0) image = image.cpu().permute(0, 2, 3, 1).numpy()[0] image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB') pred_image_list.append(image) blank_pil = combine_image(args, size, None, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil) intermediate_result = Image.new('RGB', (size*3, size)) intermediate_result.paste(image_pil, (0, 0)) intermediate_result.paste(character_mask_pil, (size, 0)) intermediate_result.paste(character_mask_highlight_pil, (size*2, 0)) return blank_pil, intermediate_result # load character-level segmenter segmenter = UNet(3, 96, True).cuda() segmenter = torch.nn.DataParallel(segmenter) segmenter.load_state_dict(torch.load(args.character_segmenter_path)) segmenter.eval() print(f'{colored("[√]", "green")} Text segmenter is successfully loaded.') def text_to_image_with_template(prompt,template_image,slider_step,slider_guidance,slider_batch, binary, version): if version == 'Stable Diffusion v2.1': vae = vae21 unet = unet21 text_encoder = text_encoder21 tokenizer = tokenizer21 scheduler = scheduler21 slider_batch = min(slider_batch, 2) size = 768 elif version == 'Stable Diffusion v1.5': vae = vae15 unet = unet15 text_encoder = text_encoder15 tokenizer = tokenizer15 scheduler = scheduler15 size = 512 else: assert False, 'Version Not Found' if has_chinese_char(prompt): print('trigger') return image_404, None if slider_step>=50: slider_step = 50 orig_template_image = template_image.resize((size,size)).convert('RGB') args.prompt = prompt sample_num = slider_batch # If passed along, set the training seed now. # seed = slider_seed seed = random.randint(0, 10000000) set_seed(seed) scheduler.set_timesteps(slider_step) noise = torch.randn((sample_num, 4, size//8, size//8)).to("cuda") # (b, 4, 64, 64) input = noise # (b, 4, 64, 64) captions = [args.prompt] * sample_num captions_nocond = [""] * sample_num print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.') # encode text prompts inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids # (b, 77) encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768) print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.') inputs_nocond = tokenizer( captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids # (b, 77) encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768) print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.') #### text-to-image-with-template #### template_image = template_image.resize((256,256)).convert('RGB') # whether binarization is needed print(f'{colored("[Warning]", "red")} args.binarization is set to {binary}. You may need it when using handwritten images as templates.') if binary: gray = ImageOps.grayscale(template_image) binary = gray.point(lambda x: 255 if x > 96 else 0, '1') template_image = binary.convert('RGB') # to_tensor = transforms.ToTensor() image_tensor = to_tensor(template_image).unsqueeze(0).cuda().sub_(0.5).div_(0.5) # (b, 3, 256, 256) with torch.no_grad(): segmentation_mask = segmenter(image_tensor) # (b, 96, 256, 256) segmentation_mask = segmentation_mask.max(1)[1].squeeze(0) # (256, 256) segmentation_mask = filter_segmentation_mask(segmentation_mask) # (256, 256) segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(size//2, size//2), mode='nearest') # (b, 1, 256, 256) segmentation_mask = segmentation_mask.squeeze(1).repeat(sample_num, 1, 1).long().to('cuda') # (b, 1, 256, 256) print(f'{colored("[√]", "green")} Character-level segmentation_mask: {segmentation_mask.shape}.') feature_mask = torch.ones(sample_num, 1, size//8, size//8).to('cuda') # (b, 1, 64, 64) masked_image = torch.zeros(sample_num, 3, size, size).to('cuda') # (b, 3, 512, 512) masked_feature = vae.encode(masked_image).latent_dist.sample() # (b, 4, 64, 64) masked_feature = masked_feature * vae.config.scaling_factor # (b, 4, 64, 64) # diffusion process intermediate_images = [] for t in tqdm(scheduler.timesteps): with torch.no_grad(): noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64 noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64 noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64 prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample input = prev_noisy_sample intermediate_images.append(prev_noisy_sample) # decode and visualization input = 1 / vae.config.scaling_factor * input sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512) image_pil = None segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy() character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((size,size)) character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask) character_mask_highlight_pil = character_mask_highlight_pil.resize((size, size)) caption_pil = make_caption_pil(args.font_path, captions) # save pred_img pred_image_list = [] for image in sample_images.float(): image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0) image = image.cpu().permute(0, 2, 3, 1).numpy()[0] image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB') pred_image_list.append(image) blank_pil = combine_image(args, size, None, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil) intermediate_result = Image.new('RGB', (size*3, size)) intermediate_result.paste(orig_template_image, (0, 0)) intermediate_result.paste(character_mask_pil, (size, 0)) intermediate_result.paste(character_mask_highlight_pil, (size*2, 0)) return blank_pil, intermediate_result def text_inpainting(prompt,orig_image,mask_image,slider_step,slider_guidance,slider_batch, version): if version == 'Stable Diffusion v2.1': vae = vae21 unet = unet21 text_encoder = text_encoder21 tokenizer = tokenizer21 scheduler = scheduler21 slider_batch = min(slider_batch, 2) size = 768 elif version == 'Stable Diffusion v1.5': vae = vae15 unet = unet15 text_encoder = text_encoder15 tokenizer = tokenizer15 scheduler = scheduler15 size = 512 else: assert False, 'Version Not Found' if has_chinese_char(prompt): print('trigger') return image_404, None if slider_step>=50: slider_step = 50 args.prompt = prompt sample_num = slider_batch # If passed along, set the training seed now. # seed = slider_seed seed = random.randint(0, 10000000) set_seed(seed) scheduler.set_timesteps(slider_step) noise = torch.randn((sample_num, 4, size//8, size//8)).to("cuda") # (b, 4, 64, 64) input = noise # (b, 4, 64, 64) captions = [args.prompt] * sample_num captions_nocond = [""] * sample_num print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.') # encode text prompts inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids # (b, 77) encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768) print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.') inputs_nocond = tokenizer( captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids # (b, 77) encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768) print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.') mask_image = cv2.resize(mask_image, (size,size)) # mask_image = mask_image.resize((512,512)).convert('RGB') text_mask = np.array(mask_image) threshold = 128 _, text_mask = cv2.threshold(text_mask, threshold, 255, cv2.THRESH_BINARY) text_mask = Image.fromarray(text_mask).convert('RGB').resize((256,256)) text_mask.save('text_mask.png') text_mask_tensor = to_tensor(text_mask).unsqueeze(0).cuda().sub_(0.5).div_(0.5) with torch.no_grad(): segmentation_mask = segmenter(text_mask_tensor) segmentation_mask = segmentation_mask.max(1)[1].squeeze(0) segmentation_mask = filter_segmentation_mask(segmentation_mask) segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(size//2, size//2), mode='nearest') image_mask = transform_mask_pil(mask_image, size) image_mask = torch.from_numpy(image_mask).cuda().unsqueeze(0).unsqueeze(0) orig_image = orig_image.convert('RGB').resize((size,size)) image = orig_image image_tensor = to_tensor(image).unsqueeze(0).cuda().sub_(0.5).div_(0.5) masked_image = image_tensor * (1-image_mask) masked_feature = vae.encode(masked_image).latent_dist.sample().repeat(sample_num, 1, 1, 1) masked_feature = masked_feature * vae.config.scaling_factor image_mask = torch.nn.functional.interpolate(image_mask, size=(size//2, size//2), mode='nearest').repeat(sample_num, 1, 1, 1) segmentation_mask = segmentation_mask * image_mask feature_mask = torch.nn.functional.interpolate(image_mask, size=(size//8, size//8), mode='nearest') # diffusion process intermediate_images = [] for t in tqdm(scheduler.timesteps): with torch.no_grad(): noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64 noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64 noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64 prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample input = prev_noisy_sample intermediate_images.append(prev_noisy_sample) # decode and visualization input = 1 / vae.config.scaling_factor * input sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512) image_pil = None segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy() character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((512,512)) character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask) character_mask_highlight_pil = character_mask_highlight_pil.resize((size, size)) caption_pil = make_caption_pil(args.font_path, captions) # save pred_img pred_image_list = [] for image in sample_images.float(): image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0) image = image.cpu().permute(0, 2, 3, 1).numpy()[0] image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB') # need to merge # image = inpainting_merge_image(orig_image, Image.fromarray(mask_image).convert('L'), image) pred_image_list.append(image) character_mask_pil.save('character_mask_pil.png') character_mask_highlight_pil.save('character_mask_highlight_pil.png') blank_pil = combine_image(args, size, None, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil) background = orig_image.resize((512, 512)) alpha = Image.new('L', background.size, int(255 * 0.2)) background.putalpha(alpha) # foreground foreground = Image.fromarray(mask_image).convert('L').resize((512, 512)) threshold = 200 alpha = foreground.point(lambda x: 0 if x > threshold else 255, '1') foreground.putalpha(alpha) merge_image = Image.alpha_composite(foreground.convert('RGBA'), background.convert('RGBA')).convert('RGB') intermediate_result = Image.new('RGB', (512*3, 512)) intermediate_result.paste(merge_image, (0, 0)) intermediate_result.paste(character_mask_pil, (512, 0)) intermediate_result.paste(character_mask_highlight_pil, (512*2, 0)) return blank_pil, intermediate_result import gradio as gr with gr.Blocks() as demo: gr.HTML( """