JimmyK300's picture
Update app.py
fe0631f verified
import gradio as gr
from llama_cpp import Llama
import os
os.system("pip install -U huggingface_hub")
os.system("huggingface-cli download Qwen/Qwen2.5-0.5B-Instruct-GGUF qwen2.5-0.5b-instruct-q2_k.gguf --local-dir . --local-dir-use-symlinks False")
# Load the Qwen GGUF model
MODEL_PATH = "./qwen2.5-0.5b-instruct-q2_k.gguf" # Ensure the file exists in this path
model = Llama(model_path=MODEL_PATH)
# Define the chat function
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Prepare the full prompt
prompt = f"{system_message}\n"
for user_msg, assistant_msg in history:
prompt += f"User: {user_msg}\nAssistant: {assistant_msg}\n"
prompt += f"User: {message}\nAssistant:"
# Generate response using llama-cpp
response = model(
prompt,
max_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p
)
# Extract text response
return response["choices"][0]["text"].strip()
# Define Gradio chat interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful AI assistant.", label="System message"),
gr.Slider(minimum=10, maximum=1024, value=256, step=10, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature no effect"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling) no effect"),
],
)
# Launch Gradio app
if __name__ == "__main__":
demo.launch()