import gradio as gr import numpy as np import pandas as pd import plotly.graph_objects as go from datasets import load_dataset from evaluate.utils import parse_readme from scipy.stats import gaussian_kde, spearmanr import generate_annotated_diffs from api_wrappers import hf_data_loader from generation_steps.metrics_analysis import AGGR_METRICS, edit_distance_fn colors = { "Expert-labeled": "#C19C0B", "Synthetic Backward": "#913632", "Synthetic Forward": "#58136a", "Full": "#000000", } METRICS = { "Edit Distance": "editdist", "Edit Similarity": "editsim", "BLEU": "bleu", "METEOR": "meteor", "ROUGE-1": "rouge1", "ROUGE-2": "rouge2", "ROUGE-L": "rougeL", "BERTScore": "bertscore", "ChrF": "chrF", } df_related = generate_annotated_diffs.data_with_annotated_diffs() def golden(): return df_related.loc[(df_related["G_type"] == "initial") & (df_related["E_type"] == "expert_labeled")].reset_index( drop=True ) def backward(): return df_related.loc[ (df_related["G_type"] == "synthetic_backward") & (df_related["E_type"] == "expert_labeled") ].reset_index(drop=True) def forward(): return df_related.loc[ (df_related["G_type"] == "initial") & (df_related["E_type"] == "synthetic_forward") ].reset_index(drop=True) def forward_from_backward(): return df_related.loc[ (df_related.G_type == "synthetic_backward") & (df_related.E_type.isin(["synthetic_forward", "synthetic_forward_from_backward"])) ].reset_index(drop=True) n_diffs_manual = len(golden()) n_diffs_synthetic_backward = len(backward()) n_diffs_synthetic_forward = len(forward()) n_diffs_synthetic_forward_backward = len(forward_from_backward()) def update_dataset_view(diff_idx, df): diff_idx -= 1 return ( df.iloc[diff_idx]["annotated_diff"], df.iloc[diff_idx]["commit_msg_start"] if "commit_msg_start" in df.columns else df.iloc[diff_idx]["G_text"], df.iloc[diff_idx]["commit_msg_end"] if "commit_msg_end" in df.columns else df.iloc[diff_idx]["E_text"], f"https://github.com/{df.iloc[diff_idx]['repo']}/commit/{df.iloc[diff_idx]['hash']}", ) def update_dataset_view_manual(diff_idx): return update_dataset_view(diff_idx, golden()) def update_dataset_view_synthetic_backward(diff_idx): return update_dataset_view(diff_idx, backward()) def update_dataset_view_synthetic_forward(diff_idx): return update_dataset_view(diff_idx, forward()) def update_dataset_view_synthetic_forward_backward(diff_idx): return update_dataset_view(diff_idx, forward_from_backward()) def number_of_pairs_plot(): related_plot_dict = { "Full": df_related, "Synthetic Backward": backward(), "Synthetic Forward": pd.concat([forward(), forward_from_backward()], axis=0, ignore_index=True), "Expert-labeled": golden(), } df_unrelated = hf_data_loader.load_synthetic_as_pandas() df_unrelated = df_unrelated.loc[~df_unrelated.is_related].copy() unrelated_plot_dict = { "Full": df_unrelated, "Synthetic Backward": df_unrelated.loc[ (df_unrelated["G_type"] == "synthetic_backward") & (~df_unrelated.E_type.isin(["synthetic_forward", "synthetic_forward_from_backward"])) ], "Synthetic Forward": df_unrelated.loc[ ((df_unrelated["G_type"] == "initial") & (df_unrelated["E_type"] == "synthetic_forward")) | ( (df_unrelated["G_type"] == "synthetic_backward") & (df_unrelated["E_type"].isin(["synthetic_forward", "synthetic_forward_from_backward"])) ) ], "Expert-labeled": df_unrelated.loc[ (df_unrelated.G_type == "initial") & (df_unrelated.E_type == "expert_labeled") ], } traces = [] for split in related_plot_dict.keys(): related_count = len(related_plot_dict[split]) unrelated_count = len(unrelated_plot_dict[split]) traces.append( go.Bar( name=f"{split} - Related pairs", x=[split], y=[related_count], marker=dict( color=colors[split], ), ) ) traces.append( go.Bar( name=f"{split} - Conditionally independent pairs", x=[split], y=[unrelated_count], marker=dict( color=colors[split], pattern=dict( shape="/", # Crosses fillmode="overlay", solidity=0.5, ), ), ) ) fig = go.Figure(data=traces) fig.update_layout( barmode="stack", bargap=0.2, xaxis=dict(title="Split", showgrid=True, gridcolor="lightgrey"), yaxis=dict(title="Number of Examples", showgrid=True, gridcolor="lightgrey"), legend=dict(title="Pair Type", orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1), plot_bgcolor="rgba(0,0,0,0)", paper_bgcolor="rgba(0,0,0,0)", width=1100, ) return fig def edit_distance_plot(): df_edit_distance = { "Full": [edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in df_related.iterrows()], "Synthetic Backward": [ edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in backward().iterrows() ], "Synthetic Forward": [ edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in pd.concat([forward(), forward_from_backward()], axis=0, ignore_index=True).iterrows() ], "Expert-labeled": [edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in golden().iterrows()], } traces = [] for key in df_edit_distance: kde_x = np.linspace(0, 1200, 1000) kde = gaussian_kde(df_edit_distance[key]) kde_line = go.Scatter(x=kde_x, y=kde(kde_x), mode="lines", name=key, line=dict(color=colors[key], width=5)) traces.append(kde_line) fig = go.Figure(data=traces) fig.update_layout( bargap=0.1, xaxis=dict(title=dict(text="Edit Distance"), range=[0, 1200], showgrid=True, gridcolor="lightgrey"), yaxis=dict( title=dict(text="Probability Density"), range=[0, 0.004], showgrid=True, gridcolor="lightgrey", tickvals=[0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004], tickformat=".4f", ), plot_bgcolor="rgba(0,0,0,0)", paper_bgcolor="rgba(0,0,0,0)", width=1100, ) return fig def get_correlations_table(online_metric_name: str) -> pd.DataFrame: df = load_dataset( "JetBrains-Research/synthetic-commit-msg-edits", "all_pairs_with_metrics_other_online_metrics", split="train" ).to_pandas() corr_df = ( df.loc[~df.is_related] .groupby(["G_text", "G_type", "hash", "repo"] + [f"online_{online_metric_name}"]) .apply(lambda g: g.to_dict(orient="records"), include_groups=False) .reset_index(name="unrelated_pairs") .copy() ) _ = corr_df.copy() for metric in AGGR_METRICS: if metric in ["editdist"]: _[metric] = _.unrelated_pairs.apply(lambda pairs: min(pair[metric] for pair in pairs)) else: _[metric] = _.unrelated_pairs.apply(lambda pairs: max(pair[metric] for pair in pairs)) results = [] for metric in AGGR_METRICS: x = _[metric].to_numpy() y = _[f"online_{online_metric_name}"].to_numpy() corr, p_value = spearmanr(x, y) results.append({"metric": metric, "corr": corr, "p_value": p_value}) __ = pd.DataFrame(results) __["p_value"] = ["< 0.05" if p < 0.05 else p for p in __.p_value] __["corr_abs"] = abs(__["corr"]) __["corr"] = __["corr"].round(2) __["metric"] = __["metric"].map({v: k for k, v in METRICS.items()}) return ( __.sort_values(by=["corr_abs"], ascending=False) .drop(columns=["corr_abs"]) .rename(columns={"metric": "Metric m", "corr": "Correlation Q(m, m*)", "p_value": "p-value"}) ) force_light_theme_js_func = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'light') { url.searchParams.set('__theme', 'light'); window.location.href = url.href; } } """ if __name__ == "__main__": with gr.Blocks(theme=gr.themes.Soft(), js=force_light_theme_js_func) as application: gr.Markdown(parse_readme("README.md")) def dataset_view_tab(n_items): slider = gr.Slider(minimum=1, maximum=n_items, step=1, value=1, label=f"Sample number (total: {n_items})") diff_view = gr.Highlightedtext(combine_adjacent=True, color_map={"+": "green", "-": "red"}) start_view = gr.Textbox(interactive=False, label="Initial message G", container=True) end_view = gr.Textbox(interactive=False, label="Edited message E", container=True) link_view = gr.Markdown() view = [diff_view, start_view, end_view, link_view] return slider, view with gr.Tab("Examples Exploration"): with gr.Tab("Manual"): slider_manual, view_manual = dataset_view_tab(n_diffs_manual) slider_manual.change(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual) with gr.Tab("Synthetic Backward"): slider_synthetic_backward, view_synthetic_backward = dataset_view_tab(n_diffs_synthetic_backward) slider_synthetic_backward.change( update_dataset_view_synthetic_backward, inputs=slider_synthetic_backward, outputs=view_synthetic_backward, ) with gr.Tab("Synthetic Forward (from initial)"): slider_synthetic_forward, view_synthetic_forward = dataset_view_tab(n_diffs_synthetic_forward) slider_synthetic_forward.change( update_dataset_view_synthetic_forward, inputs=slider_synthetic_forward, outputs=view_synthetic_forward, ) with gr.Tab("Synthetic Forward (from backward)"): slider_synthetic_forward_backward, view_synthetic_forward_backward = dataset_view_tab( n_diffs_synthetic_forward_backward ) slider_synthetic_forward_backward.change( update_dataset_view_synthetic_forward_backward, inputs=slider_synthetic_forward_backward, outputs=view_synthetic_forward_backward, ) with gr.Tab("Dataset Statistics"): gr.Markdown("## Number of examples per split") number_of_pairs_gr_plot = gr.Plot(number_of_pairs_plot, label=None) gr.Markdown("## Edit Distance Distribution (w/o PyCharm Logs)") edit_distance_gr_plot = gr.Plot(edit_distance_plot(), label=None) with gr.Tab("Experimental Results"): gr.Markdown( "Here, we provide the additional experimental results with different text similarity metrics used as the target online metric, " "in addition to edit distance between generated messages G and their edited counterparts E." ) gr.Markdown( "Please, select one of the available metrics **m*** below to see the correlations **Q(m, m\*)** of offline text similarity metrics with **m*** as an online metric." ) for metric in METRICS: with gr.Tab(metric): gr.Markdown( f"The table below presents the correlation coefficients **Q(m, m\*)** where {metric} is used as an online metric **m***." ) result_df = get_correlations_table(METRICS[metric]) gr.DataFrame(result_df) application.load(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual) application.load( update_dataset_view_synthetic_backward, inputs=slider_synthetic_backward, outputs=view_synthetic_backward ) application.load( update_dataset_view_synthetic_forward, inputs=slider_synthetic_forward, outputs=view_synthetic_forward ) application.load( update_dataset_view_synthetic_forward_backward, inputs=slider_synthetic_forward_backward, outputs=view_synthetic_forward_backward, ) application.launch()