Modified the code to include voice gender option
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import torch
|
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import soundfile as sf
|
|
|
|
| 6 |
from transformers import (
|
| 7 |
AutoModelForSeq2SeqLM,
|
| 8 |
AutoTokenizer,
|
|
@@ -17,7 +18,7 @@ from typing import Optional, Tuple, Dict, List
|
|
| 17 |
class TalklasTranslator:
|
| 18 |
"""
|
| 19 |
Speech-to-Speech translation pipeline for Philippine languages.
|
| 20 |
-
Uses MMS/Whisper for STT, NLLB for MT, and MMS for TTS.
|
| 21 |
"""
|
| 22 |
|
| 23 |
LANGUAGE_MAPPING = {
|
|
@@ -138,7 +139,6 @@ class TalklasTranslator:
|
|
| 138 |
waveform, sample_rate = sf.read(audio_path)
|
| 139 |
|
| 140 |
if sample_rate != 16000:
|
| 141 |
-
import librosa
|
| 142 |
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
| 143 |
|
| 144 |
inputs = self.stt_processor(
|
|
@@ -184,8 +184,8 @@ class TalklasTranslator:
|
|
| 184 |
print(f"Translation failed: {e}")
|
| 185 |
raise RuntimeError("Text translation failed")
|
| 186 |
|
| 187 |
-
def text_to_speech(self, text: str) -> Tuple[int, np.ndarray]:
|
| 188 |
-
"""Convert text to speech"""
|
| 189 |
try:
|
| 190 |
inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
|
| 191 |
|
|
@@ -193,6 +193,16 @@ class TalklasTranslator:
|
|
| 193 |
output = self.tts_model(**inputs)
|
| 194 |
|
| 195 |
speech = output.waveform.cpu().numpy().squeeze()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
speech = (speech * 32767).astype(np.int16)
|
| 197 |
|
| 198 |
return self.tts_model.config.sampling_rate, speech
|
|
@@ -201,12 +211,12 @@ class TalklasTranslator:
|
|
| 201 |
print(f"Speech synthesis failed: {e}")
|
| 202 |
raise RuntimeError("Speech synthesis failed")
|
| 203 |
|
| 204 |
-
def translate_speech(self, audio_path: str) -> Dict:
|
| 205 |
-
"""Full speech-to-speech translation"""
|
| 206 |
try:
|
| 207 |
source_text = self.speech_to_text(audio_path)
|
| 208 |
translated_text = self.translate_text(source_text)
|
| 209 |
-
sample_rate, audio = self.text_to_speech(translated_text)
|
| 210 |
|
| 211 |
return {
|
| 212 |
"source_text": source_text,
|
|
@@ -222,11 +232,11 @@ class TalklasTranslator:
|
|
| 222 |
"performance": f"Error: {str(e)}"
|
| 223 |
}
|
| 224 |
|
| 225 |
-
def translate_text_only(self, text: str) -> Dict:
|
| 226 |
-
"""Text-to-speech translation"""
|
| 227 |
try:
|
| 228 |
translated_text = self.translate_text(text)
|
| 229 |
-
sample_rate, audio = self.text_to_speech(translated_text)
|
| 230 |
|
| 231 |
return {
|
| 232 |
"source_text": text,
|
|
@@ -251,8 +261,8 @@ class TranslatorSingleton:
|
|
| 251 |
cls._instance = TalklasTranslator()
|
| 252 |
return cls._instance
|
| 253 |
|
| 254 |
-
def process_audio(audio_path, source_lang, target_lang):
|
| 255 |
-
"""Process audio through the full translation pipeline"""
|
| 256 |
# Validate input
|
| 257 |
if not audio_path:
|
| 258 |
return None, "No audio provided", "No translation available", "Please provide audio input"
|
|
@@ -265,12 +275,12 @@ def process_audio(audio_path, source_lang, target_lang):
|
|
| 265 |
status = translator.update_languages(source_code, target_code)
|
| 266 |
|
| 267 |
# Process the audio
|
| 268 |
-
results = translator.translate_speech(audio_path)
|
| 269 |
|
| 270 |
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
| 271 |
|
| 272 |
-
def process_text(text, source_lang, target_lang):
|
| 273 |
-
"""Process text through the translation pipeline"""
|
| 274 |
# Validate input
|
| 275 |
if not text:
|
| 276 |
return None, "No text provided", "No translation available", "Please provide text input"
|
|
@@ -283,14 +293,15 @@ def process_text(text, source_lang, target_lang):
|
|
| 283 |
status = translator.update_languages(source_code, target_code)
|
| 284 |
|
| 285 |
# Process the text
|
| 286 |
-
results = translator.translate_text_only(text)
|
| 287 |
|
| 288 |
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
| 289 |
|
| 290 |
def create_gradio_interface():
|
| 291 |
-
"""Create and launch Gradio interface"""
|
| 292 |
# Define language options
|
| 293 |
languages = list(TalklasTranslator.LANGUAGE_MAPPING.keys())
|
|
|
|
| 294 |
|
| 295 |
# Define the interface
|
| 296 |
demo = gr.Blocks(title="Talklas - Speech & Text Translation")
|
|
@@ -313,6 +324,12 @@ def create_gradio_interface():
|
|
| 313 |
label="Target Language"
|
| 314 |
)
|
| 315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
language_status = gr.Textbox(label="Language Status")
|
| 317 |
update_btn = gr.Button("Update Languages")
|
| 318 |
|
|
@@ -372,7 +389,7 @@ def create_gradio_interface():
|
|
| 372 |
# Audio translate button click
|
| 373 |
audio_translate_btn.click(
|
| 374 |
process_audio,
|
| 375 |
-
inputs=[audio_input, source_lang, target_lang],
|
| 376 |
outputs=[audio_output, source_text, translated_text, performance_info]
|
| 377 |
).then(
|
| 378 |
None,
|
|
@@ -393,7 +410,7 @@ def create_gradio_interface():
|
|
| 393 |
# Text translate button click
|
| 394 |
text_translate_btn.click(
|
| 395 |
process_text,
|
| 396 |
-
inputs=[text_input, source_lang, target_lang],
|
| 397 |
outputs=[text_output, source_text, translated_text, performance_info]
|
| 398 |
).then(
|
| 399 |
None,
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import soundfile as sf
|
| 6 |
+
import librosa
|
| 7 |
from transformers import (
|
| 8 |
AutoModelForSeq2SeqLM,
|
| 9 |
AutoTokenizer,
|
|
|
|
| 18 |
class TalklasTranslator:
|
| 19 |
"""
|
| 20 |
Speech-to-Speech translation pipeline for Philippine languages.
|
| 21 |
+
Uses MMS/Whisper for STT, NLLB for MT, and MMS for TTS with pitch-shifting for voice gender.
|
| 22 |
"""
|
| 23 |
|
| 24 |
LANGUAGE_MAPPING = {
|
|
|
|
| 139 |
waveform, sample_rate = sf.read(audio_path)
|
| 140 |
|
| 141 |
if sample_rate != 16000:
|
|
|
|
| 142 |
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
| 143 |
|
| 144 |
inputs = self.stt_processor(
|
|
|
|
| 184 |
print(f"Translation failed: {e}")
|
| 185 |
raise RuntimeError("Text translation failed")
|
| 186 |
|
| 187 |
+
def text_to_speech(self, text: str, voice_gender: str = "neutral") -> Tuple[int, np.ndarray]:
|
| 188 |
+
"""Convert text to speech with optional pitch-shifting for voice gender"""
|
| 189 |
try:
|
| 190 |
inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
|
| 191 |
|
|
|
|
| 193 |
output = self.tts_model(**inputs)
|
| 194 |
|
| 195 |
speech = output.waveform.cpu().numpy().squeeze()
|
| 196 |
+
|
| 197 |
+
# Apply pitch-shifting based on voice_gender
|
| 198 |
+
if voice_gender.lower() == "female":
|
| 199 |
+
# Increase pitch (e.g., +4 semitones for a more traditionally feminine voice)
|
| 200 |
+
speech = librosa.effects.pitch_shift(speech, sr=self.tts_model.config.sampling_rate, n_steps=4)
|
| 201 |
+
elif voice_gender.lower() == "male":
|
| 202 |
+
# Decrease pitch (e.g., -4 semitones for a more traditionally masculine voice)
|
| 203 |
+
speech = librosa.effects.pitch_shift(speech, sr=self.tts_model.config.sampling_rate, n_steps=-4)
|
| 204 |
+
|
| 205 |
+
# Convert to 16-bit PCM
|
| 206 |
speech = (speech * 32767).astype(np.int16)
|
| 207 |
|
| 208 |
return self.tts_model.config.sampling_rate, speech
|
|
|
|
| 211 |
print(f"Speech synthesis failed: {e}")
|
| 212 |
raise RuntimeError("Speech synthesis failed")
|
| 213 |
|
| 214 |
+
def translate_speech(self, audio_path: str, voice_gender: str = "neutral") -> Dict:
|
| 215 |
+
"""Full speech-to-speech translation with voice gender option"""
|
| 216 |
try:
|
| 217 |
source_text = self.speech_to_text(audio_path)
|
| 218 |
translated_text = self.translate_text(source_text)
|
| 219 |
+
sample_rate, audio = self.text_to_speech(translated_text, voice_gender)
|
| 220 |
|
| 221 |
return {
|
| 222 |
"source_text": source_text,
|
|
|
|
| 232 |
"performance": f"Error: {str(e)}"
|
| 233 |
}
|
| 234 |
|
| 235 |
+
def translate_text_only(self, text: str, voice_gender: str = "neutral") -> Dict:
|
| 236 |
+
"""Text-to-speech translation with voice gender option"""
|
| 237 |
try:
|
| 238 |
translated_text = self.translate_text(text)
|
| 239 |
+
sample_rate, audio = self.text_to_speech(translated_text, voice_gender)
|
| 240 |
|
| 241 |
return {
|
| 242 |
"source_text": text,
|
|
|
|
| 261 |
cls._instance = TalklasTranslator()
|
| 262 |
return cls._instance
|
| 263 |
|
| 264 |
+
def process_audio(audio_path, source_lang, target_lang, voice_gender):
|
| 265 |
+
"""Process audio through the full translation pipeline with voice gender"""
|
| 266 |
# Validate input
|
| 267 |
if not audio_path:
|
| 268 |
return None, "No audio provided", "No translation available", "Please provide audio input"
|
|
|
|
| 275 |
status = translator.update_languages(source_code, target_code)
|
| 276 |
|
| 277 |
# Process the audio
|
| 278 |
+
results = translator.translate_speech(audio_path, voice_gender)
|
| 279 |
|
| 280 |
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
| 281 |
|
| 282 |
+
def process_text(text, source_lang, target_lang, voice_gender):
|
| 283 |
+
"""Process text through the translation pipeline with voice gender"""
|
| 284 |
# Validate input
|
| 285 |
if not text:
|
| 286 |
return None, "No text provided", "No translation available", "Please provide text input"
|
|
|
|
| 293 |
status = translator.update_languages(source_code, target_code)
|
| 294 |
|
| 295 |
# Process the text
|
| 296 |
+
results = translator.translate_text_only(text, voice_gender)
|
| 297 |
|
| 298 |
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
| 299 |
|
| 300 |
def create_gradio_interface():
|
| 301 |
+
"""Create and launch Gradio interface with voice gender selection"""
|
| 302 |
# Define language options
|
| 303 |
languages = list(TalklasTranslator.LANGUAGE_MAPPING.keys())
|
| 304 |
+
voice_genders = ["Neutral", "Male", "Female"]
|
| 305 |
|
| 306 |
# Define the interface
|
| 307 |
demo = gr.Blocks(title="Talklas - Speech & Text Translation")
|
|
|
|
| 324 |
label="Target Language"
|
| 325 |
)
|
| 326 |
|
| 327 |
+
voice_gender = gr.Dropdown(
|
| 328 |
+
choices=voice_genders,
|
| 329 |
+
value="Neutral",
|
| 330 |
+
label="Voice Gender"
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
language_status = gr.Textbox(label="Language Status")
|
| 334 |
update_btn = gr.Button("Update Languages")
|
| 335 |
|
|
|
|
| 389 |
# Audio translate button click
|
| 390 |
audio_translate_btn.click(
|
| 391 |
process_audio,
|
| 392 |
+
inputs=[audio_input, source_lang, target_lang, voice_gender],
|
| 393 |
outputs=[audio_output, source_text, translated_text, performance_info]
|
| 394 |
).then(
|
| 395 |
None,
|
|
|
|
| 410 |
# Text translate button click
|
| 411 |
text_translate_btn.click(
|
| 412 |
process_text,
|
| 413 |
+
inputs=[text_input, source_lang, target_lang, voice_gender],
|
| 414 |
outputs=[text_output, source_text, translated_text, performance_info]
|
| 415 |
).then(
|
| 416 |
None,
|