Spaces:
Runtime error
Runtime error
Commit
·
24d7c6d
1
Parent(s):
66a45e7
Create pages/admin_utils.py
Browse files- pages/admin_utils.py +77 -0
pages/admin_utils.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pypdf import PdfReader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.embeddings import OpenAIEmbeddings
|
4 |
+
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
5 |
+
from langchain.llms import OpenAI
|
6 |
+
import pinecone
|
7 |
+
from langchain.vectorstores import Pinecone
|
8 |
+
import pandas as pd
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
#**********Functions to help you load documents to PINECONE***********
|
15 |
+
|
16 |
+
#Read PDF data
|
17 |
+
def read_pdf_data(pdf_file):
|
18 |
+
pdf_page = PdfReader(pdf_file)
|
19 |
+
text = ""
|
20 |
+
for page in pdf_page.pages:
|
21 |
+
text += page.extract_text()
|
22 |
+
return text
|
23 |
+
|
24 |
+
#Split data into chunks
|
25 |
+
def split_data(text):
|
26 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
|
27 |
+
docs = text_splitter.split_text(text)
|
28 |
+
docs_chunks =text_splitter.create_documents(docs)
|
29 |
+
return docs_chunks
|
30 |
+
|
31 |
+
#Create embeddings instance
|
32 |
+
def create_embeddings_load_data():
|
33 |
+
#embeddings = OpenAIEmbeddings()
|
34 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
35 |
+
return embeddings
|
36 |
+
|
37 |
+
#Function to push data to Pinecone
|
38 |
+
def push_to_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,docs):
|
39 |
+
|
40 |
+
pinecone.init(
|
41 |
+
api_key=pinecone_apikey,
|
42 |
+
environment=pinecone_environment
|
43 |
+
)
|
44 |
+
|
45 |
+
index_name = pinecone_index_name
|
46 |
+
index = Pinecone.from_documents(docs, embeddings, index_name=index_name)
|
47 |
+
return index
|
48 |
+
|
49 |
+
#*********Functions for dealing with Model related tasks...************
|
50 |
+
|
51 |
+
#Read dataset for model creation
|
52 |
+
def read_data(data):
|
53 |
+
df = pd.read_csv(data,delimiter=',', header=None)
|
54 |
+
return df
|
55 |
+
|
56 |
+
#Create embeddings instance
|
57 |
+
def get_embeddings():
|
58 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
59 |
+
return embeddings
|
60 |
+
|
61 |
+
#Generating embeddings for our input dataset
|
62 |
+
def create_embeddings(df,embeddings):
|
63 |
+
df[2] = df[0].apply(lambda x: embeddings.embed_query(x))
|
64 |
+
return df
|
65 |
+
|
66 |
+
#Splitting the data into train & test
|
67 |
+
def split_train_test__data(df_sample):
|
68 |
+
# Split into training and testing sets
|
69 |
+
sentences_train, sentences_test, labels_train, labels_test = train_test_split(
|
70 |
+
list(df_sample[2]), list(df_sample[1]), test_size=0.25, random_state=0)
|
71 |
+
print(len(sentences_train))
|
72 |
+
return sentences_train, sentences_test, labels_train, labels_test
|
73 |
+
|
74 |
+
#Get the accuracy score on test data
|
75 |
+
def get_score(svm_classifier,sentences_test,labels_test):
|
76 |
+
score = svm_classifier.score(sentences_test, labels_test)
|
77 |
+
return score
|