from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline import torch import gradio as gr from openpyxl import load_workbook from numpy import mean import pandas as pd import matplotlib.pyplot as plt # Load tokenizers and models tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization") tokenizer_keywords = AutoTokenizer.from_pretrained("transformer3/H2-keywordextractor") model_keywords = AutoModelForSeq2SeqLM.from_pretrained("transformer3/H2-keywordextractor") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating') new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating') classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device) label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'} # Function to parse Excel file def parse_xl(file_path): cells = [] workbook = load_workbook(filename=file_path) for sheet in workbook.worksheets: for row in sheet.iter_rows(): for cell in row: if cell.value != None: cells.append(cell.value) return cells # Function to display and filter the Excel workbook def filter_xl(file, keywords): # Load the workbook and convert it to a DataFrame workbook = load_workbook(filename=file) sheet = workbook.active data = sheet.values columns = next(data)[0:] df = pd.DataFrame(data, columns=columns) if keywords: keyword_list = keywords.split(',') for keyword in keyword_list: df = df[df.apply(lambda row: row.astype(str).str.contains(keyword.strip(), case=False).any(), axis=1)] return df # Function to calculate overall rating from filtered data def calculate_rating(filtered_df): reviews = filtered_df.to_numpy().flatten() ratings = [] for review in reviews: if pd.notna(review): rating = int(classifier(review)[0]['label'].split('_')[1]) ratings.append(rating) return round(mean(ratings), 2), ratings # Function to calculate results including summary, keywords, and sentiment def calculate_results(file, keywords): filtered_df = filter_xl(file, keywords) overall_rating, ratings = calculate_rating(filtered_df) # Summarize and extract keywords from the filtered reviews text = " ".join(filtered_df.to_numpy().flatten()) inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt") summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=10, max_length=50) summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] summary = summary.replace("I", "They").replace("my", "their").replace("me", "them") inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors="pt") summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100) keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # Determine overall sentiment sentiments = [] for review in filtered_df.to_numpy().flatten(): if pd.notna(review): sentiment = classifier(review)[0]['label'] sentiment_label = "Positive" if sentiment == "LABEL_4" or sentiment == "LABEL_5" else "Negative" if sentiment == "LABEL_1" or sentiment == "LABEL_2" else "Neutral" sentiments.append(sentiment_label) overall_sentiment = "Positive" if sentiments.count("Positive") > sentiments.count("Negative") else "Negative" if sentiments.count("Negative") > sentiments.count("Positive") else "Neutral" return overall_rating, summary, keywords, overall_sentiment, ratings, sentiments # Function to analyze a single review def analyze_review(review): if not review.strip(): return "Error: No text provided", "Error: No text provided", "Error: No text provided", "Error: No text provided" # Calculate rating rating = int(classifier(review)[0]['label'].split('_')[1]) # Summarize review inputs = tokenizer([review], max_length=1024, truncation=True, return_tensors="pt") summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=10, max_length=50) summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] summary = summary.replace("I", "he/she").replace("my", "his/her").replace("me", "him/her") # Extract keywords inputs_keywords = tokenizer_keywords([review], max_length=1024, truncation=True, return_tensors="pt") summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100) keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # Determine sentiment sentiment = classifier(review)[0]['label'] sentiment_label = "Positive" if sentiment == "LABEL_4" or sentiment == "LABEL_5" else "Negative" if sentiment == "LABEL_1" or sentiment == "LABEL_2" else "Neutral" return rating, summary, keywords, sentiment_label # Function to count rows in the filtered DataFrame def count_rows(filtered_df): return len(filtered_df) # Function to plot ratings def plot_ratings(ratings): plt.figure(figsize=(10, 5)) plt.hist(ratings, bins=range(1, 7), edgecolor='black', align='left') plt.xlabel('Rating') plt.ylabel('Frequency') plt.title('Distribution of Ratings') plt.xticks(range(1, 6)) plt.grid(True) plt.savefig('ratings_distribution.png') return 'ratings_distribution.png' # Function to plot sentiments def plot_sentiments(sentiments): sentiment_counts = pd.Series(sentiments).value_counts() plt.figure(figsize=(10, 5)) sentiment_counts.plot(kind='bar', color=['green', 'red', 'blue']) plt.xlabel('Sentiment') plt.ylabel('Frequency') plt.title('Distribution of Sentiments') plt.grid(True) plt.savefig('sentiments_distribution.png') return 'sentiments_distribution.png' # Gradio interface with gr.Blocks() as demo: with gr.Tabs(): with gr.TabItem("Upload and Filter"): with gr.Row(): with gr.Column(scale=1): excel_file = gr.File(label="Upload Excel File") #excel_file = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xlsm", ".xltx", ".xltm"]) keywords_input = gr.Textbox(label="Filter by Keywords (comma-separated)") display_button = gr.Button("Display and Filter Excel Data") clear_button_upload = gr.Button("Clear") row_count = gr.Textbox(label="Number of Rows", interactive=False) with gr.Column(scale=3): filtered_data = gr.Dataframe(label="Filtered Excel Contents") with gr.TabItem("Calculate Results"): with gr.Row(): with gr.Column(): overall_rating = gr.Textbox(label="Overall Rating") summary = gr.Textbox(label="Summary") keywords_output = gr.Textbox(label="Keywords") overall_sentiment = gr.Textbox(label="Overall Sentiment") calculate_button = gr.Button("Calculate Results") with gr.Column(): ratings_graph = gr.Image(label="Ratings Distribution") sentiments_graph = gr.Image(label="Sentiments Distribution") calculate_graph_button = gr.Button("Calculate Graph Results") with gr.TabItem("Testing Area / Write a Review"): with gr.Row(): with gr.Column(scale=2): review_input = gr.Textbox(label="Write your review here") analyze_button = gr.Button("Analyze Review") clear_button_review = gr.Button("Clear") with gr.Column(scale=2): review_rating = gr.Textbox(label="Rating") review_summary = gr.Textbox(label="Summary") review_keywords = gr.Textbox(label="Keywords") review_sentiment = gr.Textbox(label="Sentiment") display_button.click(lambda file, keywords: (filter_xl(file, keywords), count_rows(filter_xl(file, keywords))), inputs=[excel_file, keywords_input], outputs=[filtered_data, row_count]) calculate_graph_button.click(lambda file, keywords: (*calculate_results(file, keywords)[:4], plot_ratings(calculate_results(file, keywords)[4]), plot_sentiments(calculate_results(file, keywords)[5])), inputs=[excel_file, keywords_input], outputs=[overall_rating, summary, keywords_output, overall_sentiment, ratings_graph, sentiments_graph]) calculate_button.click(lambda file, keywords: (*calculate_results(file, keywords)[:4], plot_ratings(calculate_results(file, keywords)[4])), inputs=[excel_file, keywords_input], outputs=[overall_rating, summary, keywords_output, overall_sentiment]) analyze_button.click(analyze_review, inputs=review_input, outputs=[review_rating, review_summary, review_keywords, review_sentiment]) clear_button_upload.click(lambda: (""), outputs=[keywords_input]) clear_button_review.click(lambda: ("", "", "", "", ""), outputs=[review_input, review_rating, review_summary, review_keywords, review_sentiment]) demo.launch(share=True)