File size: 2,481 Bytes
e4facfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
name: "CaffeNet"

input: "data"

input_dim: 1

input_dim: 3

input_dim: 227

input_dim: 227
layers {

  name: "conv1"

  type: CONVOLUTION

  bottom: "data"

  top: "conv1"
  convolution_param {

    num_output: 96

    kernel_size: 7

    stride: 4
  }
}
layers {

  name: "relu1"

  type: RELU

  bottom: "conv1"

  top: "conv1"
}
layers {

  name: "pool1"

  type: POOLING

  bottom: "conv1"

  top: "pool1"
  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 2
  }
}
layers {

  name: "norm1"

  type: LRN

  bottom: "pool1"

  top: "norm1"
  lrn_param {

    local_size: 5

    alpha: 0.0001

    beta: 0.75
  }
}
layers {

  name: "conv2"

  type: CONVOLUTION

  bottom: "norm1"

  top: "conv2"
  convolution_param {

    num_output: 256

    pad: 2

    kernel_size: 5
  }
}
layers {

  name: "relu2"

  type: RELU

  bottom: "conv2"

  top: "conv2"
}
layers {

  name: "pool2"

  type: POOLING

  bottom: "conv2"

  top: "pool2"
  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 2
  }
}
layers {

  name: "norm2"

  type: LRN

  bottom: "pool2"

  top: "norm2"
  lrn_param {

    local_size: 5

    alpha: 0.0001

    beta: 0.75
  }
}
layers {

  name: "conv3"

  type: CONVOLUTION

  bottom: "norm2"

  top: "conv3"
  convolution_param {

    num_output: 384

    pad: 1

    kernel_size: 3
  }
}
layers{

  name: "relu3" 

  type: RELU

  bottom: "conv3"

  top: "conv3"
}
layers {

  name: "pool5"

  type: POOLING

  bottom: "conv3"

  top: "pool5"
  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 2
  }
}
layers {

  name: "fc6"

  type: INNER_PRODUCT

  bottom: "pool5"

  top: "fc6"
  inner_product_param {

    num_output: 512
  }
}
layers {

  name: "relu6"

  type: RELU

  bottom: "fc6"

  top: "fc6"
}
layers {

  name: "drop6"

  type: DROPOUT

  bottom: "fc6"

  top: "fc6"
  dropout_param {

    dropout_ratio: 0.5
  }
}
layers {

  name: "fc7"

  type: INNER_PRODUCT

  bottom: "fc6"

  top: "fc7"
  inner_product_param {

    num_output: 512
  }
}
layers {

  name: "relu7"

  type: RELU

  bottom: "fc7"

  top: "fc7"
}
layers {

  name: "drop7"

  type: DROPOUT

  bottom: "fc7"

  top: "fc7"
  dropout_param {

    dropout_ratio: 0.5
  }
}
layers {

  name: "fc8"

  type: INNER_PRODUCT

  bottom: "fc7"

  top: "fc8"
  inner_product_param {

    num_output: 8
  }
}
layers {

  name: "prob"

  type: SOFTMAX

  bottom: "fc8"

  top: "prob"
}