Spaces:
Sleeping
Sleeping
from peft import PeftModel | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Define model details | |
base_model_name = "microsoft/phi-2" | |
adapter_name = "JamieAi33/Phi-2-QLora" | |
# Load base model | |
print("Loading base model...") | |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
# Apply LoRA adapter | |
print("Loading LoRA adapter...") | |
model = PeftModel.from_pretrained(base_model, adapter_name) | |
# Function to generate text | |
def generate_text(prompt, max_tokens): | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
outputs = model.generate(**inputs, max_new_tokens=max_tokens) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# PEFT LoRA Model") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", lines=4) | |
max_tokens = gr.Slider(label="Max Tokens", minimum=10, maximum=200, value=50) | |
output = gr.Textbox(label="Generated Text", lines=6) | |
generate_button = gr.Button("Generate") | |
generate_button.click(generate_text, inputs=[prompt, max_tokens], outputs=output) | |
demo.launch() | |