File size: 4,341 Bytes
8680c69
424fc11
 
 
 
fe7ba04
424fc11
31ac4b3
424fc11
31ac4b3
 
 
424fc11
 
fe7ba04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49c34e
fe7ba04
 
 
1eb8827
fe7ba04
 
 
424fc11
 
 
 
 
 
 
 
 
 
 
 
fe7ba04
424fc11
 
fe7ba04
424fc11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8522404
424fc11
 
 
fe7ba04
424fc11
 
 
 
 
 
 
 
 
 
fe7ba04
424fc11
 
 
05b83c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424fc11
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import gradio as gr
import cv2
import pytesseract
from fastapi import FastAPI
import numpy as np

#pytesseract.pytesseract.tesseract_cmd = r'./Tesseract-OCR/tesseract.exe'

print(os.popen(f'cat /etc/debian_version').read())
print(os.popen(f'cat /etc/issue').read())
print(os.popen(f'apt search tesseract').read())


def PreprocessIMG(image):
    
    # Convert to grayscale
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # Apply Canny edge detection
    image = cv2.GaussianBlur(image,(3,3),0)
    edges = cv2.Canny(image, 90, 120, apertureSize=3)
    # Apply Hough line transform to detect lines
    lines = cv2.HoughLines(edges, 1, np.pi/180, threshold=300)

    # Remove lines from the image
    for rho, theta in lines[:, 0]:
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = b * rho
        x1 = int(x0 + 1000 * (-b))
        y1 = int(y0 + 1000 * (a))
        x2 = int(x0 - 1000 * (-b))
        y2 = int(y0 - 1000 * (a))
        cv2.line(image, (x1, y1), (x2, y2), (255, 255, 255), 3)

    return image




def TextLineBox(img, engine):

    class Lines:
        def __init__(self,x,y,w,h,text):
            self.x = x
            self.y = y
            self.w = w
            self.h = h
            self.text = text

    lineboxes = []

    #read image
    img = PreprocessIMG(img)

    ### Cofig
    configname = r' --oem 3 --psm ' + str(engine) + ' -l eng'

    #### Text for testing
    texttest = pytesseract.image_to_string(img ,config=configname)

    ### Box of words
    boxes = pytesseract.image_to_data(img, config=configname)
    # print(boxes)

    #slit box and concatenate into line
    skip = 0
    for b in boxes.splitlines():
        ## skip header
        if (skip == 0):
            skip = 1
            continue
        ## get box of word in 1 object
        b = b.split()
        if (len(b) < 12):       ## it is a space not a word
            continue

        #print(b)
        x,y,w,h,text = int(b[6]),int(b[7]),int(b[8]),int(b[9]), b[11]


        ### Begin New line if the word having num_word is 1
        if (int(b[5]) == 1):
            lineboxes.append(  Lines(x,y,w,h,text)  )

        ### Next word inline
        else:
            lineboxes[-1].text += ' ' +  text
            if (x > lineboxes[-1].x):
                lineboxes[-1].w = x - lineboxes[-1].x + w
            if (y < lineboxes[-1].y):
                lineboxes[-1].y = y
            if (y+h > lineboxes[-1].y + lineboxes[-1].h):
                lineboxes[-1].h = y+h - lineboxes[-1].y

        #draw the box of WORD
        cv2.rectangle(img, (x,y) , (w+x,y+h), (255,0,0), 2 )


    return texttest,img
    

def Download(text):
    with open("test.txt", "w") as file:
        file.write(text)
    return "test.txt"







with gr.Blocks (theme="ParityError/Anime"  , css="#SUBMIT {background-color: #cdb4db} #DOWNLOAD {background-color: #a2d2ff}") as demo:
    with gr.Row():
        with gr.Column():
            input = gr.Image()
            engine_input = gr.Text(label="Engine Mode Number")
            text_output = gr.Text(label="Result Text")
            file_output = gr.File()
            with gr.Row():
                submit_btn = gr.Button("SUBMIT" , elem_id="SUBMIT")
                download_btn = gr.Button("DOWNLOAD", elem_id="DOWNLOAD")
                clear_btn = gr.Button("CLEAR")

        with gr.Column():
            image_output = gr.Image()

    submit_btn.click(TextLineBox, inputs=[input,engine_input,], outputs= [text_output, image_output, ] )
    download_btn.click(Download, text_output, outputs= file_output )
    clear_btn.click(lambda: [None,None,None], inputs=None, outputs= [text_output, file_output, image_output])

    demo.load(
        None,
        None,
        _js="""
            () => {
                const params = new URLSearchParams(window.location.search);
                if (!params.has('__theme')) {
                    params.set('__theme', 'dark');
                    window.location.search = params.toString();
                }
            }""",
    )



demo.queue().launch()


# Cach 1 dung app Gradio (share = True)
# Cach 2 dung Mount_Gradio_app trong FASTAPI app
# Cach 3 

# app = FastAPI()
# app = gr.mount_gradio_app(app, demo, path="/OCR" )




#bt.click(fn=None, _js="window.open('https://google.com', '_blank')")