import cv2 import gradio as gr import imutils import numpy as np import torch from pytorchvideo.transforms import ( ApplyTransformToKey, Normalize, RandomShortSideScale, RemoveKey, ShortSideScale, UniformTemporalSubsample, ) from torchvision.transforms import ( Compose, Lambda, RandomCrop, RandomHorizontalFlip, Resize, ) # my code below # import transformers.models.timesformer.modeling_timesformer from transformers.models.timesformer.modeling_timesformer import TimeSformerDropPath, TimeSformerAttention, TimesformerIntermediate, TimesformerOutput, TimesformerLayer, TimesformerEncoder, TimesformerModel, TIMESFORMER_INPUTS_DOCSTRING, _CONFIG_FOR_DOC, TimesformerEmbeddings, TimesformerForVideoClassification from transformers import TimesformerConfig configuration = TimesformerConfig() import collections from typing import Optional, Tuple, Union import torch import torch.nn.functional import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.modeling_outputs import BaseModelOutput, ImageClassifierOutput from transformers.modeling_utils import PreTrainedModel from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from transformers.models.timesformer.configuration_timesformer import TimesformerConfig class MyTimesformerLayer(TimesformerLayer): def __init__(self, config: configuration, layer_index: int) -> None: super().__init__() attention_type = config.attention_type drop_path_rates = [ x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers) ] # stochastic depth decay rule drop_path_rate = drop_path_rates[layer_index] self.drop_path = TimeSformerDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.attention = TimeSformerAttention(config) self.intermediate = TimesformerIntermediate(config) self.output = TimesformerOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.config = config self.attention_type = attention_type if attention_type not in ["divided_space_time", "space_only", "joint_space_time"]: raise ValueError("Unknown attention type: {}".format(attention_type)) # Temporal Attention Parameters if self.attention_type == "divided_space_time": self.temporal_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.temporal_attention = TimeSformerAttention(config) self.temporal_dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False): num_frames = self.config.num_frames num_patch_width = self.config.image_size // self.config.patch_size batch_size = hidden_states.shape[0] num_spatial_tokens = (hidden_states.size(1) - 1) // num_frames num_patch_height = num_spatial_tokens // num_patch_width if self.attention_type in ["space_only", "joint_space_time"]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), output_attentions=output_attentions ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights hidden_states = hidden_states + self.drop_path(attention_output) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output) layer_output = hidden_states + self.drop_path(layer_output) outputs = (layer_output,) + outputs return outputs elif self.attention_type == "divided_space_time": # Spatial init_cls_token = hidden_states[:, 0, :].unsqueeze(1) cls_token = init_cls_token.repeat(1, num_frames, 1) cls_token = cls_token.reshape(batch_size * num_frames, 1, cls_token.shape[2]) spatial_embedding = hidden_states[:, 1:, :] spatial_embedding = ( spatial_embedding.reshape( batch_size, num_patch_height, num_patch_width, num_frames, spatial_embedding.shape[2] ) .permute(0, 3, 1, 2, 4) .reshape(batch_size * num_frames, num_patch_height * num_patch_width, spatial_embedding.shape[2]) ) spatial_embedding = torch.cat((cls_token, spatial_embedding), 1) spatial_attention_outputs = self.attention( self.layernorm_before(spatial_embedding), output_attentions=output_attentions ) attention_output = spatial_attention_outputs[0] outputs = spatial_attention_outputs[1:] # add self attentions if we output attention weights residual_spatial = self.drop_path(attention_output) # Taking care of CLS token cls_token = residual_spatial[:, 0, :] cls_token = cls_token.reshape(batch_size, num_frames, cls_token.shape[1]) cls_token = torch.mean(cls_token, 1, True) # averaging for every frame residual_spatial = residual_spatial[:, 1:, :] residual_spatial = ( residual_spatial.reshape( batch_size, num_frames, num_patch_height, num_patch_width, residual_spatial.shape[2] ) .permute(0, 2, 3, 1, 4) .reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_spatial.shape[2]) ) residual = residual_spatial hidden_states = hidden_states[:, 1:, :] + residual_spatial # Temporal temporal_embedding = hidden_states temporal_embedding = temporal_embedding.reshape( batch_size, num_patch_height, num_patch_width, num_frames, temporal_embedding.shape[2] ).reshape(batch_size * num_patch_height * num_patch_width, num_frames, temporal_embedding.shape[2]) temporal_attention_outputs = self.temporal_attention( self.temporal_layernorm(temporal_embedding), ) attention_output = temporal_attention_outputs[0] residual_temporal = self.drop_path(attention_output) residual_temporal = residual_temporal.reshape( batch_size, num_patch_height, num_patch_width, num_frames, residual_temporal.shape[2] ).reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_temporal.shape[2]) residual_temporal = self.temporal_dense(residual_temporal) hidden_states = hidden_states + residual_temporal # Mlp hidden_states = torch.cat((init_cls_token, hidden_states), 1) + torch.cat((cls_token, residual_temporal), 1) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output) layer_output = hidden_states + self.drop_path(layer_output) outputs = (layer_output,) + outputs return outputs import transformers.models.timesformer.modeling_timesformer class MyTimesformerEncoder(TimesformerEncoder): def __init__(self, config: configuration) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([MyTimesformerLayer(config, ind) for ind in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, output_attentions, ) else: layer_outputs = layer_module(hidden_states, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class MyTimesformerModel(TimesformerModel): def __init__(self, config: configuration): super().__init__(config) self.config = config self.embeddings = TimesformerEmbeddings(config) self.encoder = TimesformerEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: r""" Returns: Examples: ```python >>> import av >>> import numpy as np >>> from transformers import AutoImageProcessor, TimesformerModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") >>> model = TimesformerModel.from_pretrained("facebook/timesformer-base-finetuned-k400") >>> # prepare video for the model >>> inputs = image_processor(list(video), return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 1569, 768] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if self.layernorm is not None: sequence_output = self.layernorm(sequence_output) if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class MyTimesformerForVideoClassification(TimesformerForVideoClassification): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.timesformer = MyTimesformerModel(config) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoImageProcessor, TimesformerForVideoClassification >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") >>> model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400") >>> inputs = image_processor(list(video), return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... logits = outputs.logits >>> # model predicts one of the 400 Kinetics-400 classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) eating spaghetti ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.timesformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0][:, 0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) from transformers import AutoImageProcessor MODEL_CKPT = "JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6real-num_frame_10_myViT2_more_data" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") MODEL = MyTimesformerForVideoClassification.from_pretrained(MODEL_CKPT).to(DEVICE) PROCESSOR = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") RESIZE_TO = PROCESSOR.size["shortest_edge"] NUM_FRAMES_TO_SAMPLE = MODEL.config.num_frames IMAGE_STATS = {"image_mean": [0.485, 0.456, 0.406], "image_std": [0.229, 0.224, 0.225]} VAL_TRANSFORMS = Compose( [ UniformTemporalSubsample(NUM_FRAMES_TO_SAMPLE), Lambda(lambda x: x / 255.0), Normalize(IMAGE_STATS["image_mean"], IMAGE_STATS["image_std"]), Resize((RESIZE_TO, RESIZE_TO)), ] ) LABELS = list(MODEL.config.label2id.keys()) def parse_video(video_file): """A utility to parse the input videos. Reference: https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/ """ vs = cv2.VideoCapture(video_file) # try to determine the total number of frames in the video file try: prop = ( cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() else cv2.CAP_PROP_FRAME_COUNT ) total = int(vs.get(prop)) print("[INFO] {} total frames in video".format(total)) # an error occurred while trying to determine the total # number of frames in the video file except: print("[INFO] could not determine # of frames in video") print("[INFO] no approx. completion time can be provided") total = -1 frames = [] # loop over frames from the video file stream while True: # read the next frame from the file (grabbed, frame) = vs.read() if frame is not None: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frames.append(frame) # if the frame was not grabbed, then we have reached the end # of the stream if not grabbed: break return frames def preprocess_video(frames: list): """Utility to apply preprocessing transformations to a video tensor.""" # Each frame in the `frames` list has the shape: (height, width, num_channels). # Collated together the `frames` has the the shape: (num_frames, height, width, num_channels). # So, after converting the `frames` list to a torch tensor, we permute the shape # such that it becomes (num_channels, num_frames, height, width) to make # the shape compatible with the preprocessing transformations. After applying the # preprocessing chain, we permute the shape to (num_frames, num_channels, height, width) # to make it compatible with the model. Finally, we add a batch dimension so that our video # classification model can operate on it. video_tensor = torch.tensor(np.array(frames).astype(frames[0].dtype)) video_tensor = video_tensor.permute( 3, 0, 1, 2 ) # (num_channels, num_frames, height, width) video_tensor_pp = VAL_TRANSFORMS(video_tensor) video_tensor_pp = video_tensor_pp.permute( 1, 0, 2, 3 ) # (num_frames, num_channels, height, width) video_tensor_pp = video_tensor_pp.unsqueeze(0) return video_tensor_pp.to(DEVICE) def infer(video_file): frames = parse_video(video_file) video_tensor = preprocess_video(frames) inputs = {"pixel_values": video_tensor} # forward pass with torch.no_grad(): outputs = MODEL(**inputs) logits = outputs.logits softmax_scores = torch.nn.functional.softmax(logits, dim=-1).squeeze(0) confidences = {LABELS[i]: float(softmax_scores[i]) for i in range(len(LABELS))} return confidences gr.Interface( fn=infer, inputs=gr.Video(type="file"), outputs=gr.Label(num_top_classes=3), examples=[ ["examples/archery.mp4"], ["examples/bowling.mp4"], ["examples/flying_kite.mp4"], ["examples/high_jump.mp4"], ["examples/marching.mp4"], ], title="MyViT fine-tuned on a subset of Kinetics400", description=( "Gradio demo for MyViT for video classification. To use it, simply upload your video or click one of the" " examples to load them. Read more at the links below." ), article=( "
MyViT
" "