transformers from transformers import pipeline import gradio as gr #jonatasgrosman/wav2vec2-large-xlsr-53-spanish asr = pipeline("automatic-speech-recognition", "jonatasgrosman/wav2vec2-large-xlsr-53-spanish") classifier = pipeline("text-classification", "finiteautomata/beto-sentiment-analysis") def speech_to_text(speech): text = asr(speech)["text"] return text def text_to_sentiment(text): return classifier(text)[0]["label"] demo = gr.Blocks() with demo: audio_file = gr.Audio(type="filepath") text = gr.Textbox() label = gr.Label() b1 = gr.Button("Recognize Speech") b2 = gr.Button("Classify Sentiment") b1.click(speech_to_text, inputs=audio_file, outputs=text) b2.click(text_to_sentiment, inputs=text, outputs=label) demo.launch(inline=false)