from openai import AsyncOpenAI # importing openai for API usage import chainlit as cl # importing chainlit for our app from chainlit.prompt import Prompt, PromptMessage # importing prompt tools from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools from dotenv import load_dotenv import asyncio import datetime from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter from aimakerspace.vectordatabase import VectorDatabase from aimakerspace.openai_utils.prompts import ( UserRolePrompt, SystemRolePrompt, ) load_dotenv() RAQA_PROMPT_TEMPLATE = """ Use the provided context to answer the user's query. You may not answer the user's query unless there is specific context in the following text. If you do not know the answer, or cannot answer, please respond with "I don't know". Context: {context} """ raqa_prompt = SystemRolePrompt(RAQA_PROMPT_TEMPLATE) USER_PROMPT_TEMPLATE = """ User Query: {user_query} """ user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE) vector_db = None @cl.on_chat_start async def start_chat(): #Create the Vector Database for King Lear global vector_db text_loader = TextFileLoader("data/KingLear.txt") documents = text_loader.load_documents() text_splitter = CharacterTextSplitter() split_documents = text_splitter.split_texts(documents) vector_db = VectorDatabase() vector_db = asyncio.run(vector_db.abuild_from_list(split_documents)) settings = { "model": "gpt-3.5-turbo", "temperature": 0, "max_tokens": 500, "top_p": 1, "frequency_penalty": 0, "presence_penalty": 0, } cl.user_session.set("settings", settings) @cl.on_message async def main(message: cl.Message): settings = cl.user_session.get("settings") client = AsyncOpenAI() context_list = vector_db.search_by_text(message.content, k=4) context_prompt = "" for context in context_list: context_prompt += context[0] + "\n" formatted_system_prompt = raqa_prompt.create_message(context=context_prompt) formatted_user_prompt = user_prompt.create_message(user_query=message.content) print(formatted_system_prompt) print(formatted_user_prompt) prompt = Prompt( provider=ChatOpenAI.id, messages=[ PromptMessage( role="system", template=RAQA_PROMPT_TEMPLATE, formatted=formatted_system_prompt['content'], ), PromptMessage( role="user", template=USER_PROMPT_TEMPLATE, formatted=formatted_user_prompt['content'], ), ], inputs={"context": context_prompt, "user_query": message.content}, settings=settings, ) msg = cl.Message(content="") async for stream_resp in await client.chat.completions.create( messages=[m.to_openai() for m in prompt.messages], stream=True, **settings ): token = stream_resp.choices[0].delta.content if not token: token = "" await msg.stream_token(token) # Update the prompt object with the completion prompt.completion = msg.content msg.prompt = prompt # Send and close the message stream await msg.send()