import streamlit as st import torch import numpy as np import transformers import pickle def load_model(): model_finetuned = transformers.AutoModel.from_pretrained( "nghuyong/ernie-2.0-base-en", output_attentions = False, output_hidden_states = False ) model_finetuned.load_state_dict(torch.load('ErnieModel_imdb.pt', map_location=torch.device('cpu'))) tokenizer = transformers.AutoTokenizer.from_pretrained("nghuyong/ernie-2.0-base-en") return model_finetuned, tokenizer def preprocess_text(text_input, max_len, tokenizer): input_tokens = tokenizer( text_input, return_tensors='pt', padding=True, max_length=max_len, truncation = True ) return input_tokens def predict_sentiment(model, input_tokens): id2label = {0: "NEGATIVE", 1: "POSITIVE"} output = model(**input_tokens).pooler_output.detach().numpy() with open('LogReg_imdb_Ernie.pkl', 'rb') as file: cls = pickle.load(file) result = id2label[cls.predict(output)] return result st.title('Text sentiment analysis by ErnieModel') max_len = st.slider('Maximum word length', 0, 500, 250) text_input = st.text_input("Enter some text about movie") model, tokenizer = load_model() if text_input: input_tokens = preprocess_text(text_input, max_len, tokenizer) output = predict_sentiment(model, input_tokens) st.write(output)