import streamlit as st import torch import numpy as np import transformers import random import textwrap # @st.cache def load_model(): model_finetuned = transformers.AutoModelWithLMHead.from_pretrained( 'tinkoff-ai/ruDialoGPT-small', output_attentions = False, output_hidden_states = False ) model_finetuned.load_state_dict(torch.load('GPT_sonnik_only.pt', map_location=torch.device('cpu'))) tokenizer = transformers.AutoTokenizer.from_pretrained('tinkoff-ai/ruDialoGPT-small') return model_finetuned, tokenizer def preprocess_text(text_input, tokenizer): prompt = tokenizer.encode(text_input, return_tensors='pt') return prompt def predict_sentiment(model, prompt, temp, num_generate): print('1') with torch.inference_mode(): print('2') result = model.generate( input_ids=prompt, max_length=100, num_beams=5, do_sample=True, temperature=float(temp), top_k=50, top_p=0.6, no_repeat_ngram_size=3, num_return_sequences=num_generate, ).cpu().numpy() print(result) return result st.title('Text generation with dreambook') model, tokenizer = load_model() text_input = st.text_input("Enter some text about movie") max_len = st.slider('Length of sequence', 0, 100, 50) temp = st.slider('Temperature', 1, 30, 1) num_generate = st.text_input("Enter number of sequences") if st.button('Generate'): print('uirhf') prompt = preprocess_text(text_input, tokenizer) print('uirhf') result = predict_sentiment(model, prompt, temp, int(num_generate)) print('uirhf') for i in result: st.write(textwrap.fill(tokenizer.decode(i), max_len))