Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_chat import message | |
from langchain.llms import CTransformers | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import ConversationChain | |
from langchain.schema.output_parser import StrOutputParser | |
from langchain.memory import ConversationBufferMemory | |
from langchain import PromptTemplate, LLMChain | |
#create llm | |
llm = CTransformers(model="Israr-dawar/psychology_chatbot_quantized_model",model_type="llama", | |
config={'max_new_tokens':128,'temperature':0.01}) | |
def should_finish(next_input): | |
"""Returns True if the next input indicates that the user wants to finish the conversation.""" | |
return next_input.lower() == "exit" | |
# Create a prompt template | |
template = """ | |
You are a good psychologist. Please share your thoughts on the following text: | |
`{text}` | |
Now, could you please ask a question related to this `{text}`? | |
""" | |
prompt = PromptTemplate(template=template, input_variables=["text"]) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
# LLM chain with ConversationalBufferMemory object | |
chain = LLMChain(prompt=prompt, llm=llm, memory = memory, output_parser = StrOutputParser()) | |
st.title("Psychology ChatBot 🧑🏽⚕️") | |
def conversation_chat(query): | |
result = chain({"text": query, "chat_history": st.session_state['history']}) | |
print(result) # Add this line | |
print("restult: ",result) | |
st.session_state['history'].append((query, result["answer"])) | |
return result["answer"] | |
def initialize_session_state(): | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
if 'generated' not in st.session_state: | |
st.session_state['generated'] = ["Hello! Ask me anything about 🤗"] | |
if 'past' not in st.session_state: | |
st.session_state['past'] = ["Hey! 👋"] | |
def display_chat_history(): | |
reply_container = st.container() | |
container = st.container() | |
with container: | |
with st.form(key='my_form', clear_on_submit=True): | |
user_input = st.text_input("Question:", placeholder="I am a psychologist", key='input') | |
submit_button = st.form_submit_button(label='Send') | |
if submit_button and user_input: | |
output = conversation_chat(user_input) | |
st.session_state['past'].append(user_input) | |
st.session_state['generated'].append(output) | |
if st.session_state['generated']: | |
with reply_container: | |
for i in range(len(st.session_state['generated'])): | |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") | |
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") | |
# Initialize session state | |
initialize_session_state() | |
# Display chat history | |
display_chat_history() |