import gradio as gr from huggingface_hub import InferenceClient # Initialize the InferenceClient with the model ID from Hugging Face client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta") def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): """ Generates a response from the AI model based on the user's message and chat history. Args: message (str): The user's input message. history (list): A list of tuples representing the conversation history (user, assistant). system_message (str): A system-level message guiding the AI's behavior. max_tokens (int): The maximum number of tokens for the output. temperature (float): Sampling temperature for controlling the randomness. top_p (float): Top-p (nucleus sampling) for controlling diversity. Yields: str: The AI's response as it is generated. """ # Prepare the conversation history for the API call messages = [{"role": "system", "content": system_message}] for user_input, assistant_response in history: if user_input: messages.append({"role": "user", "content": user_input}) if assistant_response: messages.append({"role": "assistant", "content": assistant_response}) # Add the latest user message to the conversation messages.append({"role": "user", "content": message}) # Initialize an empty response response = "" try: # Generate a response from the model with streaming for message in client.chat_completion( messages=messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response except Exception as e: yield f"An error occurred: {str(e)}" # Define the ChatInterface with additional input components for user customization demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], title="Chatbot Interface", description="A customizable chatbot interface using Hugging Face's Inference API.", ) # Launch the Gradio interface if __name__ == "__main__": demo.launch()