import gradio as gr from huggingface_hub import InferenceClient import logging from datetime import datetime # Initialize the InferenceClient with the model ID from Hugging Face client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta") # Set up logging logging.basicConfig( filename='chatbot_log.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', ) def log_conversation(user_message, bot_response): """ Logs the conversation between the user and the AI. Args: user_message (str): The user's input message. bot_response (str): The AI's response. """ logging.info(f"User: {user_message}") logging.info(f"Bot: {bot_response}") def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, stop_sequence: str, stream_response: bool, ): """ Generates a response from the AI model based on the user's message and chat history. Args: message (str): The user's input message. history (list): A list of tuples representing the conversation history (user, assistant). system_message (str): A system-level message guiding the AI's behavior. max_tokens (int): The maximum number of tokens for the output. temperature (float): Sampling temperature for controlling the randomness. top_p (float): Top-p (nucleus sampling) for controlling diversity. stop_sequence (str): A custom stop sequence to end the response generation. stream_response (bool): Whether to stream the response or return it as a whole. Yields: str: The AI's response as it is generated. """ # Prepare the conversation history for the API call messages = [{"role": "system", "content": system_message}] for user_input, assistant_response in history: if user_input: messages.append({"role": "user", "content": user_input}) if assistant_response: messages.append({"role": "assistant", "content": assistant_response}) # Add the latest user message to the conversation messages.append({"role": "user", "content": message}) # Initialize an empty response response = "" try: if stream_response: # Generate a response from the model with streaming for message in client.chat_completion( messages=messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, stop=stop_sequence, ): token = message.choices[0].delta.get("content", "") response += token yield response else: # Generate a complete response without streaming result = client.chat_completion( messages=messages, max_tokens=max_tokens, stream=False, temperature=temperature, top_p=top_p, stop=stop_sequence, ) response = result.choices[0].message.get("content", "") log_conversation(message, response) yield response except Exception as e: error_message = f"An error occurred: {str(e)}" logging.error(error_message) yield error_message # Define the ChatInterface with additional input components for user customization demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System Message", lines=2), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"), gr.Textbox(value="", label="Stop Sequence (optional)", lines=1), gr.Checkbox(label="Stream Response", value=True), ], title="AI Chatbot Interface", description="Interact with an AI chatbot powered by Hugging Face's Zephyr-7B model. Customize the chatbot's behavior and response generation settings.", theme="default", allow_flagging="never", ) # Launch the Gradio interface if __name__ == "__main__": logging.info("Launching the Gradio interface...") demo.launch() logging.info("Gradio interface launched successfully.")