# Install necessary libraries # pip install gradio transformers from transformers import pipeline import gradio as gr # Load the text-generation pipeline pipe = pipeline("text-generation", model="thrishala/mental_health_chatbot") # Define the chatbot function def chatbot_response(input_text): # Generate a response using the model response = pipe(input_text, max_length=150, num_return_sequences=1, pad_token_id=50256) return response[0]['generated_text'] # Create a Gradio interface with gr.Blocks() as demo: gr.Markdown("# Mental Health Chatbot") gr.Markdown("This chatbot is designed to provide responses for mental health-related queries.") with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Your Question", placeholder="Ask me anything...") submit_button = gr.Button("Submit") with gr.Column(): output_text = gr.Textbox(label="Chatbot Response", placeholder="The chatbot will respond here...") submit_button.click(fn=chatbot_response, inputs=input_text, outputs=output_text) # Launch the app demo.launch()