import gradio as gr import numpy as np import os import time from itertools import chain from typing import List, Dict, Generator, Optional, Tuple, Any from functools import partial from resources.data import fixed_messages, topic_lists, interview_types from utils.ui import add_candidate_message, add_interviewer_message from api.llm import LLMManager from api.audio import TTSManager, STTManager DEMO_MESSAGE: str = """ This service is running in demo mode with limited performance (e.g. slow voice recognition). For a better experience, run the service locally, refer to the Instruction tab for more details. """ def send_request( code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]], llm: LLMManager, tts: Optional[TTSManager], silent: Optional[bool] = False, ) -> Generator[Tuple[List[Dict[str, str]], List[List[Optional[str]]], str, bytes], None, None]: """ Send a request to the LLM and process the response. Args: code (str): Current code. previous_code (str): Previous code. chat_history (List[Dict[str, str]]): Current chat history. chat_display (List[List[Optional[str]]]): Current chat display. llm (LLMManager): LLM manager instance. tts (Optional[TTSManager]): TTS manager instance. silent (Optional[bool]): Whether to silence audio output. Defaults to False. Yields: Tuple[List[Dict[str, str]], List[List[Optional[str]]], str, bytes]: Updated chat history, chat display, code, and audio chunk. """ # TODO: Find the way to simplify it and remove duplication in logic if silent is None: silent = os.getenv("SILENT", False) if chat_display[-1][0] is None and code == previous_code: yield chat_history, chat_display, code, b"" return chat_history = llm.update_chat_history(code, previous_code, chat_history, chat_display) original_len = len(chat_display) chat_display.append([None, ""]) text_chunks = [] reply = llm.get_text(chat_history) chat_history.append({"role": "assistant", "content": ""}) audio_generator = iter(()) has_text_item = True has_audio_item = not silent audio_created = 0 is_notes = False while has_text_item or has_audio_item: try: text_chunk = next(reply) text_chunks.append(text_chunk) has_text_item = True except StopIteration: has_text_item = False chat_history[-1]["content"] = "".join(text_chunks) if silent: audio_chunk = b"" else: try: audio_chunk = next(audio_generator) has_audio_item = True except StopIteration: audio_chunk = b"" has_audio_item = False if has_text_item and not is_notes: last_message = chat_display[-1][1] last_message += text_chunk split_notes = last_message.split("#NOTES#") if len(split_notes) > 1: is_notes = True last_message = split_notes[0] split_messages = last_message.split("\n\n") chat_display[-1][1] = split_messages[0] for m in split_messages[1:]: chat_display.append([None, m]) if not silent: if len(chat_display) - original_len > audio_created + has_text_item: audio_generator = chain(audio_generator, tts.read_text(chat_display[original_len + audio_created][1])) audio_created += 1 has_audio_item = True yield chat_history, chat_display, code, audio_chunk if chat_display and len(chat_display) > 1 and chat_display[-1][1] == "" and chat_display[-2][1]: chat_display.pop() yield chat_history, chat_display, code, b"" def change_code_area(interview_type: str) -> gr.update: """ Update the code area based on the interview type. Args: interview_type (str): Type of interview. Returns: gr.update: Gradio update object for the code area. """ if interview_type == "coding": return gr.update( label="Please write your code here. You can use any language, but only Python syntax highlighting is available.", language="python", ) elif interview_type == "sql": return gr.update( label="Please write your query here.", language="sql", ) else: return gr.update( label="Please write any notes for your solution here.", language=None, ) def get_problem_solving_ui( llm: LLMManager, tts: TTSManager, stt: STTManager, default_audio_params: Dict[str, Any], audio_output: gr.Audio ) -> gr.Tab: """ Create the problem-solving UI for the interview application. Args: llm (LLMManager): LLM manager instance. tts (TTSManager): TTS manager instance. stt (STTManager): STT manager instance. default_audio_params (Dict[str, Any]): Default audio parameters. audio_output (gr.Audio): Gradio audio output component. Returns: gr.Tab: Gradio tab containing the problem-solving UI. """ send_request_partial = partial(send_request, llm=llm, tts=tts) with gr.Tab("Interview", render=False, elem_id=f"tab") as problem_tab: if os.getenv("IS_DEMO"): gr.Markdown(DEMO_MESSAGE) chat_history = gr.State([]) previous_code = gr.State("") start_time = gr.State(None) hi_markdown = gr.Markdown( "

Hi! I'm here to guide you through a practice session for your technical interview. Choose the interview settings to begin.

\n" ) # UI components for interview settings with gr.Row() as init_acc: with gr.Column(scale=3): interview_type_select = gr.Dropdown( show_label=False, info="Type of the interview.", choices=interview_types, value="coding", container=True, allow_custom_value=False, elem_id=f"interview_type_select", scale=2, ) difficulty_select = gr.Dropdown( show_label=False, info="Difficulty of the problem.", choices=["Easy", "Medium", "Hard"], value="Medium", container=True, allow_custom_value=True, elem_id=f"difficulty_select", scale=2, ) topic_select = gr.Dropdown( show_label=False, info="Topic (you can type any value).", choices=topic_lists[interview_type_select.value], value=np.random.choice(topic_lists[interview_type_select.value]), container=True, allow_custom_value=True, elem_id=f"topic_select", scale=2, ) with gr.Column(scale=4): requirements = gr.Textbox( label="Requirements", show_label=False, placeholder="Specify additional requirements if any.", container=False, lines=5, elem_id=f"requirements", ) with gr.Row(): terms_checkbox = gr.Checkbox( label="", container=False, value=not os.getenv("IS_DEMO", False), interactive=True, elem_id=f"terms_checkbox", min_width=20, ) with gr.Column(scale=100): gr.Markdown( "#### I agree to the [terms and conditions](https://github.com/IliaLarchenko/Interviewer?tab=readme-ov-file#important-legal-and-compliance-information)" ) start_btn = gr.Button("Generate a problem", elem_id=f"start_btn", interactive=not os.getenv("IS_DEMO", False)) # Problem statement and solution components with gr.Accordion("Problem statement", open=True, visible=False) as problem_acc: description = gr.Markdown(elem_id=f"problem_description", line_breaks=True) with gr.Accordion("Solution", open=True, visible=False) as solution_acc: with gr.Row() as content: with gr.Column(scale=2): code = gr.Code( label="Please write your code here.", language="python", lines=46, elem_id=f"code", ) with gr.Column(scale=1): end_btn = gr.Button("Finish the interview", interactive=False, variant="stop", elem_id=f"end_btn") chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, elem_id=f"chat") audio_input = gr.Audio(interactive=False, **default_audio_params, elem_id=f"audio_input") audio_buffer = gr.State(np.array([], dtype=np.int16)) audio_to_transcribe = gr.State(np.array([], dtype=np.int16)) with gr.Accordion("Feedback", open=True, visible=False) as feedback_acc: interview_time = gr.Markdown() feedback = gr.Markdown(elem_id=f"feedback", line_breaks=True) # Event handlers def start_timer(): return time.time() def get_duration_string(start_time): if start_time is None: duration_str = "" else: duration = int(time.time() - start_time) minutes, seconds = divmod(duration, 60) duration_str = f"Interview duration: {minutes} minutes, {seconds} seconds" return duration_str start_btn.click(fn=start_timer, outputs=[start_time]).success( fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat] ).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success( fn=lambda: ( gr.update(visible=False), gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), gr.update(visible=False), ), outputs=[init_acc, start_btn, terms_checkbox, interview_type_select, hi_markdown], ).success( fn=lambda: (gr.update(visible=True)), outputs=[problem_acc], ).success( fn=llm.get_problem, inputs=[requirements, difficulty_select, topic_select, interview_type_select], outputs=[description], scroll_to_output=True, ).success( fn=llm.init_bot, inputs=[description, interview_type_select], outputs=[chat_history] ).success( fn=lambda: (gr.update(visible=True), gr.update(interactive=True), gr.update(interactive=True)), outputs=[solution_acc, end_btn, audio_input], ) end_btn.click(fn=lambda x: add_candidate_message("Let's stop here.", x), inputs=[chat], outputs=[chat]).success( fn=add_interviewer_message(fixed_messages["end"]), inputs=[chat], outputs=[chat], ).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success( fn=lambda: ( gr.update(open=False), gr.update(interactive=False), gr.update(open=False), gr.update(interactive=False), ), outputs=[solution_acc, end_btn, problem_acc, audio_input], ).success( fn=lambda: (gr.update(visible=True)), outputs=[feedback_acc], ).success( fn=llm.end_interview, inputs=[description, chat_history, interview_type_select], outputs=[feedback] ).success( fn=get_duration_string, inputs=[start_time], outputs=[interview_time] ) hidden_text = gr.State("") is_transcribing = gr.State(False) audio_input.stream( stt.process_audio_chunk, inputs=[audio_input, audio_buffer], outputs=[audio_buffer, audio_to_transcribe], ).success(fn=lambda: True, outputs=[is_transcribing]).success( fn=stt.transcribe_audio, inputs=[audio_to_transcribe, hidden_text], outputs=[hidden_text] ).success( fn=stt.add_to_chat, inputs=[hidden_text, chat], outputs=[chat] ).success( fn=lambda: False, outputs=[is_transcribing] ) # We need to wait until the last chunk of audio is transcribed before sending the request # I didn't find a native way of gradio to handle this, and used a workaround WAIT_TIME = 3 TIME_STEP = 0.3 STEPS = int(WAIT_TIME / TIME_STEP) stop_audio_recording = audio_input.stop_recording(fn=lambda: gr.update(visible=False), outputs=[audio_input]) for _ in range(STEPS): stop_audio_recording = stop_audio_recording.success(fn=lambda x: time.sleep(TIME_STEP) if x else None, inputs=[is_transcribing]) stop_audio_recording.success( fn=send_request_partial, inputs=[code, previous_code, chat_history, chat], outputs=[chat_history, chat, previous_code, audio_output], show_progress="full", ).then(fn=lambda: (np.array([], dtype=np.int16), "", False), outputs=[audio_buffer, hidden_text, is_transcribing]).then( fn=lambda: gr.update(visible=True), outputs=[audio_input] ) interview_type_select.change( fn=lambda x: gr.update(choices=topic_lists[x], value=np.random.choice(topic_lists[x])), inputs=[interview_type_select], outputs=[topic_select], ).success(fn=change_code_area, inputs=[interview_type_select], outputs=[code]) terms_checkbox.change(fn=lambda x: gr.update(interactive=x), inputs=[terms_checkbox], outputs=[start_btn]) return problem_tab