Upload 2 files
Browse files- app.py +39 -0
- requirement.txt +2 -0
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from stranformer import pipeline
|
3 |
+
|
4 |
+
base_model = "minhtt/vistral-7b-chat"
|
5 |
+
|
6 |
+
bnb_config = BitsAndBytesConfig(
|
7 |
+
load_in_4bit= True,
|
8 |
+
bnb_4bit_quant_type= "nf4",
|
9 |
+
bnb_4bit_compute_dtype= torch.bfloat16,
|
10 |
+
bnb_4bit_use_double_quant= False,
|
11 |
+
)
|
12 |
+
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
base_model,
|
15 |
+
load_in_4bit=True,
|
16 |
+
quantization_config=bnb_config,
|
17 |
+
torch_dtype=torch.bfloat16,
|
18 |
+
device_map="auto",
|
19 |
+
trust_remote_code=True,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
24 |
+
model.config.pretraining_tp = 1
|
25 |
+
model.gradient_checkpointing_enable()
|
26 |
+
|
27 |
+
# Load tokenizer
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
29 |
+
tokenizer.padding_side = 'right'
|
30 |
+
tokenizer.pad_token = tokenizer.eos_token
|
31 |
+
tokenizer.add_eos_token = True
|
32 |
+
tokenizer.bos_token, tokenizer.eos_token
|
33 |
+
|
34 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
35 |
+
text = st.text_erea()
|
36 |
+
|
37 |
+
if text:
|
38 |
+
out = pipe(text)
|
39 |
+
st.text_erea(out)
|
requirement.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|