from ultralytics import YOLO from PIL import Image import gradio as gr from huggingface_hub import snapshot_download import os MODEL_REPO_ID = "mintheinwin/3907578Y" def load_model(repo_id): download_dir = snapshot_download(repo_id) print(download_dir) path = os.path.join(download_dir, "best_int8_openvino_model") print(path) detection_model = YOLO(path, task='detect') return detection_model detection_model = load_model(MODEL_REPO_ID) # Student ID student_info = "Student Id: 3907578Y, Name: Min Thein Win" def predict(pilimg): source = pilimg result = detection_model.predict(source, conf=0.5, iou=0.5) img_bgr = result[0].plot() out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image return out_pilimg gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), title="Detect Tiger and lion", description=student_info, ).launch(share=True)