Spaces:
Runtime error
Runtime error
Commit
·
a97d6e0
1
Parent(s):
1e74261
changes to requirements and app.py for video uplaod
Browse files- app.py +49 -15
- requirements.txt +3 -0
app.py
CHANGED
@@ -3,35 +3,69 @@ from PIL import Image
|
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import snapshot_download
|
5 |
import os
|
6 |
-
|
7 |
-
|
8 |
|
9 |
def load_model(repo_id):
|
10 |
download_dir = snapshot_download(repo_id)
|
11 |
print(download_dir)
|
12 |
-
path
|
13 |
print(path)
|
14 |
detection_model = YOLO(path, task='detect')
|
15 |
return detection_model
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
source = pilimg
|
21 |
-
# x = np.asarray(pilimg)
|
22 |
-
# print(x.shape)
|
23 |
result = detection_model.predict(source, conf=0.5, iou=0.6)
|
24 |
img_bgr = result[0].plot()
|
25 |
-
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) #
|
26 |
-
|
27 |
return out_pilimg
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
detection_model = load_model(REPO_ID)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import snapshot_download
|
5 |
import os
|
6 |
+
import cv2
|
7 |
+
import tempfile
|
8 |
|
9 |
def load_model(repo_id):
|
10 |
download_dir = snapshot_download(repo_id)
|
11 |
print(download_dir)
|
12 |
+
path = os.path.join(download_dir, "best_int8_openvino_model")
|
13 |
print(path)
|
14 |
detection_model = YOLO(path, task='detect')
|
15 |
return detection_model
|
16 |
|
17 |
+
def predict_image(pilimg):
|
18 |
+
# Process image
|
|
|
19 |
source = pilimg
|
|
|
|
|
20 |
result = detection_model.predict(source, conf=0.5, iou=0.6)
|
21 |
img_bgr = result[0].plot()
|
22 |
+
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # Convert BGR to RGB
|
|
|
23 |
return out_pilimg
|
24 |
|
25 |
+
def predict_video(video_path):
|
26 |
+
# Read video file
|
27 |
+
cap = cv2.VideoCapture(video_path)
|
28 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
29 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
30 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
31 |
|
32 |
+
# Create temporary output file
|
33 |
+
temp_video = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
34 |
+
out = cv2.VideoWriter(temp_video.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
35 |
+
|
36 |
+
while cap.isOpened():
|
37 |
+
ret, frame = cap.read()
|
38 |
+
if not ret:
|
39 |
+
break
|
40 |
+
|
41 |
+
# Run YOLO prediction on each frame
|
42 |
+
result = detection_model.predict(frame, conf=0.5, iou=0.6)
|
43 |
+
frame_with_boxes = result[0].plot()
|
44 |
|
45 |
+
# Write processed frame to output video
|
46 |
+
out.write(frame_with_boxes)
|
47 |
+
|
48 |
+
cap.release()
|
49 |
+
out.release()
|
50 |
+
|
51 |
+
return temp_video.name
|
52 |
+
|
53 |
+
REPO_ID = "CharmainChua/windowsandcurtains"
|
54 |
detection_model = load_model(REPO_ID)
|
55 |
|
56 |
+
# Gradio Interface
|
57 |
+
image_input = gr.Interface(
|
58 |
+
fn=predict_image,
|
59 |
+
inputs=gr.Image(type="pil"),
|
60 |
+
outputs=gr.Image(type="pil"),
|
61 |
+
label="Object Detection on Image"
|
62 |
+
)
|
63 |
+
|
64 |
+
video_input = gr.Interface(
|
65 |
+
fn=predict_video,
|
66 |
+
inputs=gr.Video(type="file"),
|
67 |
+
outputs=gr.Video(),
|
68 |
+
label="Object Detection on Video"
|
69 |
+
)
|
70 |
+
|
71 |
+
gr.TabbedInterface([image_input, video_input], ["Image Detection", "Video Detection"]).launch(share=True)
|
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
ultralytics
|
2 |
huggingface_hub
|
|
|
|
|
|
|
|
1 |
ultralytics
|
2 |
huggingface_hub
|
3 |
+
gradio
|
4 |
+
opencv-python
|
5 |
+
Pillow
|