import gradio as gr # Load model directly from transformers import AutoModelForCausalLM, AutoTokenizer # Load the LoRA model and tokenizer tokenizer = AutoTokenizer.from_pretrained("ID2223JR/lora_model") model = AutoModelForCausalLM.from_pretrained("ID2223JR/lora_model") # Data storage ingredients_list = [] # Function to add ingredient def add_ingredient(ingredient, quantity): if ingredient and quantity > 0: ingredients_list.append(f"{ingredient}, {quantity} grams") return ( "\n".join(ingredients_list), gr.update(value="", interactive=True), gr.update(value=None, interactive=True), ) # Function to enable/disable add button def validate_inputs(ingredient, quantity): if ingredient and quantity > 0: return gr.update(interactive=True) return gr.update(interactive=False) # Function to handle model submission def submit_to_model(): if not ingredients_list: return "Ingredients list is empty! Please add ingredients first." # Join ingredients into a single prompt prompt = f"Using the following ingredients, suggest a recipe:\n\n" + "\n".join( ingredients_list ) # Tokenize and pass the prompt to the model inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) # Decode the model output response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # App def app(): with gr.Blocks() as demo: with gr.Row(): ingredient_input = gr.Textbox( label="Ingredient", placeholder="Enter ingredient name" ) quantity_input = gr.Number(label="Quantity (grams)", value=None) add_button = gr.Button("Add Ingredient", interactive=False) output = gr.Textbox(label="Ingredients List", lines=10, interactive=False) with gr.Row(): submit_button = gr.Button("Submit") model_output = gr.Textbox( label="Recipe Suggestion", lines=10, interactive=False ) # Validate inputs ingredient_input.change( validate_inputs, [ingredient_input, quantity_input], add_button ) quantity_input.change( validate_inputs, [ingredient_input, quantity_input], add_button ) # Add ingredient logic add_button.click( add_ingredient, [ingredient_input, quantity_input], [output, ingredient_input, quantity_input], ) # Submit to model logic submit_button.click( submit_to_model, inputs=None, # No inputs required as it uses the global ingredients_list outputs=model_output, ) return demo demo = app() demo.launch()