File size: 3,387 Bytes
c54c38e f81fade 66d8dc1 11c7c05 66d8dc1 33780b7 66d8dc1 11c7c05 bde77a1 c54c38e bde77a1 659d5ba 11c7c05 bde77a1 c54c38e bde77a1 c54c38e bde77a1 11c7c05 66d8dc1 8ea8a6a 66d8dc1 2cd6927 11c7c05 bde77a1 c54c38e bde77a1 11c7c05 bde77a1 c54c38e 11c7c05 c54c38e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
# Load model directly
# from transformers import AutoModel, AutoTokenizer
# model = AutoModel.from_pretrained("ID2223JR/gguf_model")
# tokenizer = AutoTokenizer.from_pretrained("ID2223JR/gguf_model")
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="ID2223JR/gguf_model",
filename="unsloth.Q4_K_M.gguf",
)
# Data storage
ingredients_list = []
# Function to add ingredient
def add_ingredient(ingredient, quantity):
if ingredient and int(quantity) > 0:
ingredients_list.append(f"{ingredient}, {quantity} grams")
return (
"\n".join(ingredients_list),
gr.update(value="", interactive=True),
gr.update(value=None, interactive=True),
)
# Function to enable/disable add button
def validate_inputs(ingredient, quantity):
if ingredient and quantity > 0:
return gr.update(interactive=True)
return gr.update(interactive=False)
# Function to handle model submission
def submit_to_model():
if not ingredients_list:
return "Ingredients list is empty! Please add ingredients first."
# Join ingredients into a single prompt
prompt = f"Using the following ingredients, suggest a recipe:\n\n" + "\n".join(
ingredients_list
)
response = llm.create_chat_completion(
messages=[
{
"role": "system",
"content": "You are a world-renowned chef, celebrated for your expertise in creating delectable dishes from diverse cuisines. You have a vast knowledge of ingredients, cooking techniques, and dietary preferences. Your role is to suggest personalized recipes based on the ingredients available, dietary restrictions, or specific meal requests. Please provide clear, step-by-step instructions and any useful tips to enhance the dish's flavor or presentation. Begin by introducing the recipe and why it’s a great choice.",
},
{"role": "user", "content": prompt},
]
)
return response.choices[0].message.content
# App
def app():
with gr.Blocks() as demo:
with gr.Row():
ingredient_input = gr.Textbox(
label="Ingredient", placeholder="Enter ingredient name"
)
quantity_input = gr.Number(label="Quantity (grams)", value=None)
add_button = gr.Button("Add Ingredient", interactive=False)
output = gr.Textbox(label="Ingredients List", lines=10, interactive=False)
with gr.Row():
submit_button = gr.Button("Submit")
model_output = gr.Textbox(
label="Recipe Suggestion", lines=10, interactive=False
)
# Validate inputs
ingredient_input.change(
validate_inputs, [ingredient_input, quantity_input], add_button
)
quantity_input.change(
validate_inputs, [ingredient_input, quantity_input], add_button
)
# Add ingredient logic
add_button.click(
add_ingredient,
[ingredient_input, quantity_input],
[output, ingredient_input, quantity_input],
)
# Submit to model logic
submit_button.click(
submit_to_model,
inputs=None, # No inputs required as it uses the global ingredients_list
outputs=model_output,
)
return demo
demo = app()
demo.launch()
|