PointCloudC / util /data_util.py
Ren Jiawei
update
d7b89b7
raw
history blame
6.31 kB
import glob
import h5py
import numpy as np
from torch.utils.data import Dataset
import os
import json
from PointWOLF import PointWOLF
def load_data(partition):
all_data = []
all_label = []
for h5_name in glob.glob('./data/modelnet40_ply_hdf5_2048/ply_data_%s*.h5' % partition):
f = h5py.File(h5_name)
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label
def pc_normalize(pc):
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
pc = pc / m
return pc
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip)
return pointcloud
# =========== ModelNet40 =================
class ModelNet40(Dataset):
def __init__(self, num_points, partition='train', args=None):
self.data, self.label = load_data(partition)
self.num_points = num_points
self.partition = partition
self.PointWOLF = PointWOLF(args) if args is not None else None
def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
label = self.label[item]
if self.partition == 'train':
np.random.shuffle(pointcloud)
if self.PointWOLF is not None:
_, pointcloud = self.PointWOLF(pointcloud)
return pointcloud, label
def __len__(self):
return self.data.shape[0]
# =========== ShapeNet Part =================
class PartNormalDataset(Dataset):
def __init__(self, npoints=2500, split='train', normalize=False):
self.npoints = npoints
self.root = './data/shapenetcore_partanno_segmentation_benchmark_v0_normal'
self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')
self.cat = {}
self.normalize = normalize
with open(self.catfile, 'r') as f:
for line in f:
ls = line.strip().split()
self.cat[ls[0]] = ls[1]
self.cat = {k: v for k, v in self.cat.items()}
self.meta = {}
with open(os.path.join(self.root, 'train_test_split', 'shuffled_train_file_list.json'), 'r') as f:
train_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_val_file_list.json'), 'r') as f:
val_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_test_file_list.json'), 'r') as f:
test_ids = set([str(d.split('/')[2]) for d in json.load(f)])
for item in self.cat:
self.meta[item] = []
dir_point = os.path.join(self.root, self.cat[item])
fns = sorted(os.listdir(dir_point))
if split == 'trainval':
fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]
elif split == 'train':
fns = [fn for fn in fns if fn[0:-4] in train_ids]
elif split == 'val':
fns = [fn for fn in fns if fn[0:-4] in val_ids]
elif split == 'test':
fns = [fn for fn in fns if fn[0:-4] in test_ids]
else:
print('Unknown split: %s. Exiting..' % (split))
exit(-1)
for fn in fns:
token = (os.path.splitext(os.path.basename(fn))[0])
self.meta[item].append(os.path.join(dir_point, token + '.txt'))
self.datapath = []
for item in self.cat:
for fn in self.meta[item]:
self.datapath.append((item, fn))
self.classes = dict(zip(self.cat, range(len(self.cat))))
# Mapping from category ('Chair') to a list of int [10,11,12,13] as segmentation labels
self.seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46],
'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27],
'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40],
'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}
self.cache = {} # from index to (point_set, cls, seg) tuple
self.cache_size = 20000
def __getitem__(self, index):
if index in self.cache:
point_set, normal, seg, cls = self.cache[index]
else:
fn = self.datapath[index]
cat = self.datapath[index][0]
cls = self.classes[cat]
cls = np.array([cls]).astype(np.int32)
data = np.loadtxt(fn[1]).astype(np.float32)
point_set = data[:, 0:3]
normal = data[:, 3:6]
seg = data[:, -1].astype(np.int32)
if len(self.cache) < self.cache_size:
self.cache[index] = (point_set, normal, seg, cls)
if self.normalize:
point_set = pc_normalize(point_set)
choice = np.random.choice(len(seg), self.npoints, replace=True)
# resample
# note that the number of points in some points clouds is less than 2048, thus use random.choice
# remember to use the same seed during train and test for a getting stable result
point_set = point_set[choice, :]
seg = seg[choice]
normal = normal[choice, :]
return point_set, cls, seg, normal
def __len__(self):
return len(self.datapath)
if __name__ == '__main__':
train = ModelNet40(1024)
test = ModelNet40(1024, 'test')
for data, label in train:
print(data.shape)
print(label.shape)