Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from sentence_transformers import SentenceTransformer
|
|
| 6 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 7 |
from beir import util
|
| 8 |
from beir.datasets.data_loader import GenericDataLoader
|
| 9 |
-
from beir import EvaluateRetrieval
|
| 10 |
|
| 11 |
|
| 12 |
# Function to load the dataset
|
|
@@ -53,6 +53,7 @@ def rerank_passages(retrieved_indices, corpus, queries):
|
|
| 53 |
return reranked_passages
|
| 54 |
|
| 55 |
# Function for evaluation
|
|
|
|
| 56 |
def evaluate(qrels, retrieved_indices, reranked_passages, queries):
|
| 57 |
evaluator = EvaluateRetrieval()
|
| 58 |
|
|
@@ -73,7 +74,7 @@ def evaluate(qrels, retrieved_indices, reranked_passages, queries):
|
|
| 73 |
|
| 74 |
ndcg_score_stage2 = evaluator.evaluate(qrels, results_stage2, [10])['NDCG@10']
|
| 75 |
return ndcg_score_stage1, ndcg_score_stage2
|
| 76 |
-
|
| 77 |
# Streamlit app
|
| 78 |
def main():
|
| 79 |
st.title("Multi-Stage Text Retrieval Pipeline")
|
|
@@ -92,10 +93,11 @@ def main():
|
|
| 92 |
st.success("Reranking completed!")
|
| 93 |
st.write("Reranked passages:", reranked_passages)
|
| 94 |
|
| 95 |
-
if st.button("Evaluate"):
|
| 96 |
ndcg_score_stage1, ndcg_score_stage2 = evaluate(qrels, retrieved_indices, reranked_passages, queries)
|
| 97 |
st.write(f"NDCG@10 for Stage 1 (Candidate Retrieval): {ndcg_score_stage1}")
|
| 98 |
st.write(f"NDCG@10 for Stage 2 (Reranking): {ndcg_score_stage2}")
|
|
|
|
| 99 |
|
| 100 |
if __name__ == "__main__":
|
| 101 |
main()
|
|
|
|
| 6 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 7 |
from beir import util
|
| 8 |
from beir.datasets.data_loader import GenericDataLoader
|
| 9 |
+
#from beir import EvaluateRetrieval
|
| 10 |
|
| 11 |
|
| 12 |
# Function to load the dataset
|
|
|
|
| 53 |
return reranked_passages
|
| 54 |
|
| 55 |
# Function for evaluation
|
| 56 |
+
""""
|
| 57 |
def evaluate(qrels, retrieved_indices, reranked_passages, queries):
|
| 58 |
evaluator = EvaluateRetrieval()
|
| 59 |
|
|
|
|
| 74 |
|
| 75 |
ndcg_score_stage2 = evaluator.evaluate(qrels, results_stage2, [10])['NDCG@10']
|
| 76 |
return ndcg_score_stage1, ndcg_score_stage2
|
| 77 |
+
"""
|
| 78 |
# Streamlit app
|
| 79 |
def main():
|
| 80 |
st.title("Multi-Stage Text Retrieval Pipeline")
|
|
|
|
| 93 |
st.success("Reranking completed!")
|
| 94 |
st.write("Reranked passages:", reranked_passages)
|
| 95 |
|
| 96 |
+
"""if st.button("Evaluate"):
|
| 97 |
ndcg_score_stage1, ndcg_score_stage2 = evaluate(qrels, retrieved_indices, reranked_passages, queries)
|
| 98 |
st.write(f"NDCG@10 for Stage 1 (Candidate Retrieval): {ndcg_score_stage1}")
|
| 99 |
st.write(f"NDCG@10 for Stage 2 (Reranking): {ndcg_score_stage2}")
|
| 100 |
+
"""
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
main()
|