Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,46 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from datasets import load_dataset
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
-
from transformers import
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Load models
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
# Main function for the Streamlit app
|
19 |
def main():
|
20 |
st.title("Multi-Stage Text Retrieval Pipeline for QA")
|
21 |
-
|
22 |
-
# Load dataset
|
23 |
-
dataset = load_nq_dataset()
|
24 |
-
|
25 |
-
# User input
|
26 |
question = st.text_input("Enter a question:")
|
27 |
|
28 |
if question:
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
if __name__ == "__main__":
|
45 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
import numpy as np
|
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
+
from transformers import CrossEncoder
|
5 |
|
6 |
+
# Sample passages
|
7 |
+
passages = [
|
8 |
+
"The sky is blue.",
|
9 |
+
"The grass is green.",
|
10 |
+
"The sun is bright.",
|
11 |
+
"Rain falls from the sky.",
|
12 |
+
"Flowers bloom in spring."
|
13 |
+
]
|
14 |
|
15 |
# Load models
|
16 |
+
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
17 |
+
ranking_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
18 |
+
|
19 |
+
def get_relevant_passages(question, passages):
|
20 |
+
keywords = question.lower().split()
|
21 |
+
relevant_passages = [p for p in passages if any(keyword in p.lower() for keyword in keywords)]
|
22 |
+
return relevant_passages if relevant_passages else passages # Return all if no match
|
23 |
|
|
|
24 |
def main():
|
25 |
st.title("Multi-Stage Text Retrieval Pipeline for QA")
|
|
|
|
|
|
|
|
|
|
|
26 |
question = st.text_input("Enter a question:")
|
27 |
|
28 |
if question:
|
29 |
+
relevant_passages = get_relevant_passages(question, passages)
|
30 |
+
st.write("Relevant passages:")
|
31 |
+
for p in relevant_passages:
|
32 |
+
st.write(f"- {p}")
|
33 |
+
|
34 |
+
# Embedding and ranking
|
35 |
+
if st.button("Retrieve Answers"):
|
36 |
+
passage_embeddings = embedding_model.encode(relevant_passages)
|
37 |
+
question_embedding = embedding_model.encode(question)
|
38 |
+
scores = np.dot(passage_embeddings, question_embedding.T)
|
39 |
+
ranked_indices = np.argsort(scores)[::-1]
|
40 |
+
|
41 |
+
st.write("Ranked passages:")
|
42 |
+
for idx in ranked_indices:
|
43 |
+
st.write(f"- {relevant_passages[idx]} (Score: {scores[idx]:.2f})")
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
main()
|