Hyma7 commited on
Commit
b7abf64
·
verified ·
1 Parent(s): 8562d6e

Upload 2 files

Browse files
Files changed (2) hide show
  1. requirements.txt +4 -0
  2. streamlitApp.py +73 -0
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit
2
+ torch
3
+ transformers
4
+ numpy
streamlitApp.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import BertTokenizer, BertModel
3
+ import torch
4
+ import numpy as np
5
+
6
+ # Load the pre-trained BERT model and tokenizer
7
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
8
+ model = BertModel.from_pretrained('bert-base-uncased')
9
+
10
+ # Define criteria for scoring
11
+ criteria = {
12
+ "technical": ["machine learning", "data", "preprocess", "decision tree", "SVM", "neural network", "hyperparameter"],
13
+ "problem_solving": ["cross-validation", "grid search", "evaluate", "optimize", "performance"],
14
+ "communication": ["I would", "then", "and", "also"]
15
+ }
16
+
17
+ # Function to encode a response using BERT
18
+ def encode_response(response):
19
+ inputs = tokenizer(response, return_tensors='pt', padding=True, truncation=True)
20
+ outputs = model(**inputs)
21
+ return outputs.last_hidden_state.mean(dim=1).squeeze().detach().numpy()
22
+
23
+ # Function to score the response based on predefined criteria
24
+ def score_response(response, criteria):
25
+ scores = {}
26
+ for criterion, keywords in criteria.items():
27
+ scores[criterion] = sum([1 for word in keywords if word in response]) / len(keywords)
28
+ return scores
29
+
30
+ # Function to rank candidates by average score
31
+ def rank_candidates(candidates):
32
+ for candidate in candidates:
33
+ avg_score = np.mean(list(candidate['scores'].values()))
34
+ candidate['avg_score'] = avg_score
35
+ ranked_candidates = sorted(candidates, key=lambda x: x['avg_score'], reverse=True)
36
+ return ranked_candidates
37
+
38
+ # Streamlit app
39
+ st.title("AI Role Candidate Screening")
40
+
41
+ # Input for the number of candidates
42
+ num_candidates = st.number_input("Enter the number of candidates:", min_value=1, max_value=10, value=3)
43
+
44
+ # Create input fields for candidate names and responses
45
+ mock_interviews = []
46
+ for i in range(num_candidates):
47
+ name = st.text_input(f"Enter the name of Candidate {i+1}:", key=f"name_{i}")
48
+ response = st.text_area(f"Enter the interview response for {name}:", key=f"response_{i}")
49
+ if name and response:
50
+ mock_interviews.append({"name": name, "response": response})
51
+
52
+ # Analyze the candidates when the user clicks the "Analyze" button
53
+ if st.button('Analyze Responses'):
54
+ if mock_interviews:
55
+ # Encode and score each candidate
56
+ scored_candidates = []
57
+ for candidate in mock_interviews:
58
+ scores = score_response(candidate['response'], criteria)
59
+ candidate['scores'] = scores
60
+ candidate['encoded'] = encode_response(candidate['response'])
61
+ scored_candidates.append(candidate)
62
+
63
+ # Rank the candidates based on scores
64
+ ranked_candidates = rank_candidates(scored_candidates)
65
+
66
+ # Display the results
67
+ st.write("### Candidate Rankings")
68
+ for rank, candidate in enumerate(ranked_candidates, 1):
69
+ st.write(f"**Rank {rank}: {candidate['name']}**")
70
+ st.write(f"Average Score: {candidate['avg_score']:.2f}")
71
+ st.write(f"Scores: {candidate['scores']}")
72
+ else:
73
+ st.write("Please enter candidate responses.")