import streamlit as st from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain_community.llms import HuggingFaceEndpoint from pathlib import Path import chromadb from unidecode import unidecode from transformers import AutoTokenizer import transformers import torch import tqdm import accelerate import re # Function to load PDF document and create doc splits def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) doc_splits = text_splitter.split_documents(pages) return doc_splits # Create vector database def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, # persist_directory=default_persist_directory ) return vectordb # Load vector database def load_db(): embedding = HuggingFaceEmbeddings() vectordb = Chroma( # persist_directory=default_persist_directory, embedding_function=embedding) return vectordb # Initialize Langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db): if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, load_in_8bit=True, ) # Add other LLM models initialization conditions here... memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) return qa_chain # Function to process uploaded PDFs and initialize the database def process_documents(list_file_obj, chunk_size, chunk_overlap): list_file_path = [x.name for x in list_file_obj if x is not None] collection_name = create_collection_name(list_file_path[0]) doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) vector_db = create_db(doc_splits, collection_name) return vector_db # Streamlit app def main(): st.title("PDF-based Chatbot") st.write("Ask any questions about your PDF documents") # Step 1: Upload PDF documents uploaded_files = st.file_uploader("Upload your PDF documents (single or multiple)", type=["pdf"], accept_multiple_files=True) # Step 2: Process documents and initialize vector database if uploaded_files: chunk_size = st.slider("Chunk size", min_value=100, max_value=1000, value=600, step=20) chunk_overlap = st.slider("Chunk overlap", min_value=10, max_value=200, value=40, step=10) if st.button("Generate Vector Database"): vector_db = process_documents(uploaded_files, chunk_size, chunk_overlap) st.success("Vector database generated successfully!") # Step 3: Initialize QA chain with selected LLM model st.header("Initialize Question Answering (QA) Chain") llm_model = st.selectbox("Choose LLM Model", list_llm_simple) temperature = st.slider("Temperature", min_value=0.01, max_value=1.0, value=0.7, step=0.1) max_tokens = st.slider("Max Tokens", min_value=224, max_value=4096, value=1024, step=32) top_k = st.slider("Top-k Samples", min_value=1, max_value=10, value=3, step=1) if st.button("Initialize QA Chain"): qa_chain = initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db) st.success("QA Chain initialized successfully!") # Step 4: Chatbot interaction st.header("Chatbot") message = st.text_input("Type your message here") if st.button("Submit"): response = qa_chain(message) st.write(f"Chatbot Response: {response['answer']}") if __name__ == "__main__": main()