import streamlit as st import os from pathlib import Path from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain.memory import ConversationBufferMemory from unidecode import unidecode import chromadb import re list_llm = [ "mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it", "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", "google/flan-t5-xxl" ] def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name ) return vectordb def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db): llm = HuggingFaceEndpoint(repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k) memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False ) return qa_chain def create_collection_name(file_path): collection_name = Path(file_path).stem collection_name = unidecode(collection_name) collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) collection_name = collection_name[:50] if len(collection_name) < 3: collection_name = collection_name + 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' return collection_name def main(): st.title("PDF-based Chatbot") uploaded_files = st.file_uploader("Upload PDF documents (single or multiple)", type="pdf", accept_multiple_files=True) if uploaded_files: chunk_size = st.slider("Chunk size", min_value=100, max_value=1000, value=600, step=20) chunk_overlap = st.slider("Chunk overlap", min_value=10, max_value=200, value=40, step=10) list_file_path = [file.name for file in uploaded_files] if st.button("Generate Vector Database"): st.text("Loading documents...") doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) st.text("Creating vector database...") collection_name = create_collection_name(list_file_path[0]) vector_db = create_db(doc_splits, collection_name) llm_model = st.selectbox("Choose LLM Model", list_llm) temperature = st.slider("Temperature", min_value=0.01, max_value=1.0, value=0.7, step=0.1) max_tokens = st.slider("Max Tokens", min_value=224, max_value=4096, value=1024, step=32) top_k = st.slider("Top-K Samples", min_value=1, max_value=10, value=3, step=1) if st.button("Initialize QA Chain"): st.text("Initializing QA chain...") qa_chain = initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db) st.header("Chatbot") message = st.text_input("Type your message") if st.button("Submit"): st.text("Generating response...") response = qa_chain({"question": message, "chat_history": []}) st.write("Assistant:", response["answer"]) if __name__ == "__main__": main()