Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
from pathlib import Path | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from unidecode import unidecode | |
import chromadb | |
import re | |
list_llm = [ | |
"mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it", | |
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", | |
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", | |
"google/flan-t5-xxl" | |
] | |
def load_doc(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
new_client = chromadb.EphemeralClient() | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=new_client, | |
collection_name=collection_name | |
) | |
return vectordb | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db): | |
llm = HuggingFaceEndpoint(repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k) | |
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False | |
) | |
return qa_chain | |
def create_collection_name(file_path): | |
collection_name = Path(file_path).stem | |
collection_name = unidecode(collection_name) | |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) | |
collection_name = collection_name[:50] | |
if len(collection_name) < 3: | |
collection_name = collection_name + 'xyz' | |
if not collection_name[0].isalnum(): | |
collection_name = 'A' + collection_name[1:] | |
if not collection_name[-1].isalnum(): | |
collection_name = collection_name[:-1] + 'Z' | |
return collection_name | |
def main(): | |
st.title("PDF-based Chatbot") | |
uploaded_files = st.file_uploader("Upload PDF documents (single or multiple)", type="pdf", accept_multiple_files=True) | |
if uploaded_files: | |
chunk_size = st.slider("Chunk size", min_value=100, max_value=1000, value=600, step=20) | |
chunk_overlap = st.slider("Chunk overlap", min_value=10, max_value=200, value=40, step=10) | |
list_file_path = [file.name for file in uploaded_files] | |
if st.button("Generate Vector Database"): | |
st.text("Loading documents...") | |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) | |
st.text("Creating vector database...") | |
collection_name = create_collection_name(list_file_path[0]) | |
vector_db = create_db(doc_splits, collection_name) | |
llm_model = st.selectbox("Choose LLM Model", list_llm) | |
temperature = st.slider("Temperature", min_value=0.01, max_value=1.0, value=0.7, step=0.1) | |
max_tokens = st.slider("Max Tokens", min_value=224, max_value=4096, value=1024, step=32) | |
top_k = st.slider("Top-K Samples", min_value=1, max_value=10, value=3, step=1) | |
if st.button("Initialize QA Chain"): | |
st.text("Initializing QA chain...") | |
qa_chain = initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db) | |
st.header("Chatbot") | |
message = st.text_input("Type your message") | |
if st.button("Submit"): | |
st.text("Generating response...") | |
response = qa_chain({"question": message, "chat_history": []}) | |
st.write("Assistant:", response["answer"]) | |
if __name__ == "__main__": | |
main() | |