Deprecated old demo solution [no ci]
Browse files- AeroPath/__init__.py +0 -0
- AeroPath/gui.py +0 -171
- AeroPath/inference.py +0 -103
- AeroPath/utils.py +0 -67
- app.py +0 -41
AeroPath/__init__.py
DELETED
File without changes
|
AeroPath/gui.py
DELETED
@@ -1,171 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
|
5 |
-
from .inference import run_model
|
6 |
-
from .utils import load_ct_to_numpy
|
7 |
-
from .utils import load_pred_volume_to_numpy
|
8 |
-
from .utils import nifti_to_glb
|
9 |
-
|
10 |
-
|
11 |
-
class WebUI:
|
12 |
-
def __init__(
|
13 |
-
self,
|
14 |
-
model_name: str = None,
|
15 |
-
cwd: str = "/home/user/app/",
|
16 |
-
share: int = 1,
|
17 |
-
):
|
18 |
-
# global states
|
19 |
-
self.images = []
|
20 |
-
self.pred_images = []
|
21 |
-
|
22 |
-
# @TODO: This should be dynamically set based on chosen volume size
|
23 |
-
self.nb_slider_items = 415
|
24 |
-
|
25 |
-
self.model_name = model_name
|
26 |
-
self.cwd = cwd
|
27 |
-
self.share = share
|
28 |
-
|
29 |
-
self.class_name = "airways" # default
|
30 |
-
self.class_names = {
|
31 |
-
"airways": "CT_Airways",
|
32 |
-
"lungs": "CT_Lungs",
|
33 |
-
}
|
34 |
-
|
35 |
-
self.result_names = {
|
36 |
-
"airways": "Airways",
|
37 |
-
"lungs": "Lungs",
|
38 |
-
}
|
39 |
-
|
40 |
-
# define widgets not to be rendered immediately, but later on
|
41 |
-
self.slider = gr.Slider(
|
42 |
-
1,
|
43 |
-
self.nb_slider_items,
|
44 |
-
value=1,
|
45 |
-
step=1,
|
46 |
-
label="Which 2D slice to show",
|
47 |
-
)
|
48 |
-
self.volume_renderer = gr.Model3D(
|
49 |
-
clear_color=[0.0, 0.0, 0.0, 0.0],
|
50 |
-
label="3D Model",
|
51 |
-
visible=True,
|
52 |
-
elem_id="model-3d",
|
53 |
-
).style(height=512)
|
54 |
-
|
55 |
-
def set_class_name(self, value):
|
56 |
-
print("Changed task to:", value)
|
57 |
-
self.class_name = value
|
58 |
-
|
59 |
-
def combine_ct_and_seg(self, img, pred):
|
60 |
-
return (img, [(pred, self.class_name)])
|
61 |
-
|
62 |
-
def upload_file(self, file):
|
63 |
-
return file.name
|
64 |
-
|
65 |
-
def process(self, mesh_file_name):
|
66 |
-
path = mesh_file_name.name
|
67 |
-
run_model(
|
68 |
-
path,
|
69 |
-
model_path=os.path.join(self.cwd, "resources/models/"),
|
70 |
-
task=self.class_names[self.class_name],
|
71 |
-
name=self.result_names[self.class_name],
|
72 |
-
)
|
73 |
-
nifti_to_glb("prediction.nii.gz")
|
74 |
-
|
75 |
-
self.images = load_ct_to_numpy(path)
|
76 |
-
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
77 |
-
return "./prediction.obj"
|
78 |
-
|
79 |
-
def get_img_pred_pair(self, k):
|
80 |
-
k = int(k) - 1
|
81 |
-
out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items
|
82 |
-
out[k] = gr.AnnotatedImage.update(
|
83 |
-
self.combine_ct_and_seg(self.images[k], self.pred_images[k]),
|
84 |
-
visible=True,
|
85 |
-
)
|
86 |
-
return out
|
87 |
-
|
88 |
-
def run(self):
|
89 |
-
css = """
|
90 |
-
#model-3d {
|
91 |
-
height: 512px;
|
92 |
-
}
|
93 |
-
#model-2d {
|
94 |
-
height: 512px;
|
95 |
-
margin: auto;
|
96 |
-
}
|
97 |
-
#upload {
|
98 |
-
height: 120px;
|
99 |
-
}
|
100 |
-
"""
|
101 |
-
with gr.Blocks(css=css) as demo:
|
102 |
-
with gr.Row():
|
103 |
-
file_output = gr.File(file_count="single", elem_id="upload")
|
104 |
-
file_output.upload(self.upload_file, file_output, file_output)
|
105 |
-
|
106 |
-
model_selector = gr.Dropdown(
|
107 |
-
list(self.class_names.keys()),
|
108 |
-
label="Task",
|
109 |
-
info="Which task to perform - one model for"
|
110 |
-
"airways and lungs extraction",
|
111 |
-
multiselect=False,
|
112 |
-
size="sm",
|
113 |
-
)
|
114 |
-
model_selector.input(
|
115 |
-
fn=lambda x: self.set_class_name(x),
|
116 |
-
inputs=model_selector,
|
117 |
-
outputs=None,
|
118 |
-
)
|
119 |
-
|
120 |
-
run_btn = gr.Button("Run analysis").style(
|
121 |
-
full_width=False, size="lg"
|
122 |
-
)
|
123 |
-
run_btn.click(
|
124 |
-
fn=lambda x: self.process(x),
|
125 |
-
inputs=file_output,
|
126 |
-
outputs=self.volume_renderer,
|
127 |
-
)
|
128 |
-
|
129 |
-
with gr.Row():
|
130 |
-
gr.Examples(
|
131 |
-
examples=[
|
132 |
-
os.path.join(self.cwd, "test_thorax_CT_ds.nii"),
|
133 |
-
os.path.join(self.cwd, "test_thorax_CT_ds.nii"),
|
134 |
-
],
|
135 |
-
inputs=file_output,
|
136 |
-
outputs=file_output,
|
137 |
-
fn=self.upload_file,
|
138 |
-
cache_examples=True,
|
139 |
-
)
|
140 |
-
|
141 |
-
with gr.Row():
|
142 |
-
with gr.Box():
|
143 |
-
with gr.Column():
|
144 |
-
image_boxes = []
|
145 |
-
for i in range(self.nb_slider_items):
|
146 |
-
visibility = True if i == 1 else False
|
147 |
-
t = gr.AnnotatedImage(
|
148 |
-
visible=visibility, elem_id="model-2d"
|
149 |
-
).style(
|
150 |
-
color_map={self.class_name: "#ffae00"},
|
151 |
-
height=512,
|
152 |
-
width=512,
|
153 |
-
)
|
154 |
-
image_boxes.append(t)
|
155 |
-
|
156 |
-
self.slider.input(
|
157 |
-
self.get_img_pred_pair, self.slider, image_boxes
|
158 |
-
)
|
159 |
-
|
160 |
-
self.slider.render()
|
161 |
-
|
162 |
-
with gr.Box():
|
163 |
-
self.volume_renderer.render()
|
164 |
-
|
165 |
-
# sharing app publicly -> share=True:
|
166 |
-
# https://gradio.app/sharing-your-app/
|
167 |
-
# inference times > 60 seconds -> need queue():
|
168 |
-
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
169 |
-
demo.queue().launch(
|
170 |
-
server_name="0.0.0.0", server_port=7860, share=self.share
|
171 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AeroPath/inference.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
import configparser
|
2 |
-
import logging
|
3 |
-
import os
|
4 |
-
import shutil
|
5 |
-
import traceback
|
6 |
-
|
7 |
-
|
8 |
-
def run_model(
|
9 |
-
input_path: str,
|
10 |
-
model_path: str,
|
11 |
-
verbose: str = "info",
|
12 |
-
task: str = "CT_Airways",
|
13 |
-
name: str = "Airways",
|
14 |
-
):
|
15 |
-
logging.basicConfig()
|
16 |
-
logging.getLogger().setLevel(logging.WARNING)
|
17 |
-
|
18 |
-
if verbose == "debug":
|
19 |
-
logging.getLogger().setLevel(logging.DEBUG)
|
20 |
-
elif verbose == "info":
|
21 |
-
logging.getLogger().setLevel(logging.INFO)
|
22 |
-
elif verbose == "error":
|
23 |
-
logging.getLogger().setLevel(logging.ERROR)
|
24 |
-
else:
|
25 |
-
raise ValueError("Unsupported verbose value provided:", verbose)
|
26 |
-
|
27 |
-
# delete patient/result folder if they exist
|
28 |
-
if os.path.exists("./patient/"):
|
29 |
-
shutil.rmtree("./patient/")
|
30 |
-
if os.path.exists("./result/"):
|
31 |
-
shutil.rmtree("./result/")
|
32 |
-
|
33 |
-
patient_directory = ''
|
34 |
-
output_path = ''
|
35 |
-
try:
|
36 |
-
# setup temporary patient directory
|
37 |
-
filename = input_path.split("/")[-1]
|
38 |
-
splits = filename.split(".")
|
39 |
-
extension = ".".join(splits[1:])
|
40 |
-
patient_directory = "./patient/"
|
41 |
-
os.makedirs(patient_directory + "T0/", exist_ok=True)
|
42 |
-
shutil.copy(
|
43 |
-
input_path,
|
44 |
-
patient_directory + "T0/" + splits[0] + "-t1gd." + extension,
|
45 |
-
)
|
46 |
-
|
47 |
-
# define output directory to save results
|
48 |
-
output_path = "./result/prediction-" + splits[0] + "/"
|
49 |
-
os.makedirs(output_path, exist_ok=True)
|
50 |
-
|
51 |
-
# Setting up the configuration file
|
52 |
-
rads_config = configparser.ConfigParser()
|
53 |
-
rads_config.add_section("Default")
|
54 |
-
rads_config.set("Default", "task", "mediastinum_diagnosis")
|
55 |
-
rads_config.set("Default", "caller", "")
|
56 |
-
rads_config.add_section("System")
|
57 |
-
rads_config.set("System", "gpu_id", "-1")
|
58 |
-
rads_config.set("System", "input_folder", patient_directory)
|
59 |
-
rads_config.set("System", "output_folder", output_path)
|
60 |
-
rads_config.set("System", "model_folder", model_path)
|
61 |
-
rads_config.set(
|
62 |
-
"System",
|
63 |
-
"pipeline_filename",
|
64 |
-
os.path.join(model_path, task, "pipeline.json"),
|
65 |
-
)
|
66 |
-
rads_config.add_section("Runtime")
|
67 |
-
rads_config.set(
|
68 |
-
"Runtime", "reconstruction_method", "thresholding"
|
69 |
-
) # thresholding, probabilities
|
70 |
-
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
71 |
-
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
72 |
-
|
73 |
-
with open("rads_config.ini", "w") as f:
|
74 |
-
rads_config.write(f)
|
75 |
-
|
76 |
-
# finally, run inference
|
77 |
-
from raidionicsrads.compute import run_rads
|
78 |
-
|
79 |
-
run_rads(config_filename="rads_config.ini")
|
80 |
-
|
81 |
-
# rename and move final result
|
82 |
-
os.rename(
|
83 |
-
"./result/prediction-"
|
84 |
-
+ splits[0]
|
85 |
-
+ "/T0/"
|
86 |
-
+ splits[0]
|
87 |
-
+ "-t1gd_annotation-"
|
88 |
-
+ name
|
89 |
-
+ ".nii.gz",
|
90 |
-
"./prediction.nii.gz",
|
91 |
-
)
|
92 |
-
# Clean-up
|
93 |
-
if os.path.exists(patient_directory):
|
94 |
-
shutil.rmtree(patient_directory)
|
95 |
-
if os.path.exists(output_path):
|
96 |
-
shutil.rmtree(output_path)
|
97 |
-
except Exception as e:
|
98 |
-
print(traceback.format_exc())
|
99 |
-
# Clean-up
|
100 |
-
if os.path.exists(patient_directory):
|
101 |
-
shutil.rmtree(patient_directory)
|
102 |
-
if os.path.exists(output_path):
|
103 |
-
shutil.rmtree(output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AeroPath/utils.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
import nibabel as nib
|
2 |
-
import numpy as np
|
3 |
-
from nibabel.processing import resample_to_output
|
4 |
-
from skimage.measure import marching_cubes
|
5 |
-
|
6 |
-
|
7 |
-
def load_ct_to_numpy(data_path):
|
8 |
-
if type(data_path) != str:
|
9 |
-
data_path = data_path.name
|
10 |
-
|
11 |
-
image = nib.load(data_path)
|
12 |
-
resampled = resample_to_output(image, None, order=0)
|
13 |
-
data = resampled.get_fdata()
|
14 |
-
|
15 |
-
data = np.rot90(data, k=1, axes=(0, 1))
|
16 |
-
|
17 |
-
data[data < -1024] = -1024
|
18 |
-
data[data > 1024] = 1024
|
19 |
-
|
20 |
-
data = data - np.amin(data)
|
21 |
-
data = data / np.amax(data) * 255
|
22 |
-
data = data.astype("uint8")
|
23 |
-
|
24 |
-
print(data.shape)
|
25 |
-
return [data[..., i] for i in range(data.shape[-1])]
|
26 |
-
|
27 |
-
|
28 |
-
def load_pred_volume_to_numpy(data_path):
|
29 |
-
if type(data_path) != str:
|
30 |
-
data_path = data_path.name
|
31 |
-
|
32 |
-
image = nib.load(data_path)
|
33 |
-
resampled = resample_to_output(image, None, order=0)
|
34 |
-
data = resampled.get_fdata()
|
35 |
-
|
36 |
-
data = np.rot90(data, k=1, axes=(0, 1))
|
37 |
-
|
38 |
-
data[data > 0] = 1
|
39 |
-
data = data.astype("uint8")
|
40 |
-
|
41 |
-
print(data.shape)
|
42 |
-
return [data[..., i] for i in range(data.shape[-1])]
|
43 |
-
|
44 |
-
|
45 |
-
def nifti_to_glb(path, output="prediction.obj"):
|
46 |
-
# load NIFTI into numpy array
|
47 |
-
image = nib.load(path)
|
48 |
-
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
49 |
-
data = resampled.get_fdata().astype("uint8")
|
50 |
-
|
51 |
-
# extract surface
|
52 |
-
verts, faces, normals, values = marching_cubes(data, 0)
|
53 |
-
faces += 1
|
54 |
-
|
55 |
-
with open(output, "w") as thefile:
|
56 |
-
for item in verts:
|
57 |
-
thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
58 |
-
|
59 |
-
for item in normals:
|
60 |
-
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
61 |
-
|
62 |
-
for item in faces:
|
63 |
-
thefile.write(
|
64 |
-
"f {0}//{0} {1}//{1} {2}//{2}\n".format(
|
65 |
-
item[0], item[1], item[2]
|
66 |
-
)
|
67 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from argparse import ArgumentParser
|
3 |
-
|
4 |
-
from AeroPath.gui import WebUI
|
5 |
-
|
6 |
-
|
7 |
-
def main():
|
8 |
-
parser = ArgumentParser()
|
9 |
-
parser.add_argument(
|
10 |
-
"--cwd",
|
11 |
-
type=str,
|
12 |
-
default="/home/user/app/",
|
13 |
-
help="Set current working directory (path to app.py).",
|
14 |
-
)
|
15 |
-
parser.add_argument(
|
16 |
-
"--share",
|
17 |
-
type=int,
|
18 |
-
default=1,
|
19 |
-
help="Whether to enable the app to be accessible online"
|
20 |
-
"-> setups a public link which requires internet access.",
|
21 |
-
)
|
22 |
-
args = parser.parse_args()
|
23 |
-
|
24 |
-
print("Current working directory:", args.cwd)
|
25 |
-
|
26 |
-
if not os.path.exists(args.cwd):
|
27 |
-
raise ValueError("Chosen 'cwd' is not a valid path!")
|
28 |
-
if args.share not in [0, 1]:
|
29 |
-
raise ValueError(
|
30 |
-
"The 'share' argument can only be set to 0 or 1, but was:",
|
31 |
-
args.share,
|
32 |
-
)
|
33 |
-
|
34 |
-
# initialize and run app
|
35 |
-
print("Launching demo...")
|
36 |
-
app = WebUI(cwd=args.cwd, share=args.share)
|
37 |
-
app.run()
|
38 |
-
|
39 |
-
|
40 |
-
if __name__ == "__main__":
|
41 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|