# main.py import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import torch from huggingface_hub import HfApi, HfFolder # Replace '' with your actual API token api_token = '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' # Initialize the HfApi with the API token api = HfApi(token=api_token) print('loggedin') # Verify that you're logged in user = api.whoami() print(user) # Load model and tokenizer model_name = "meta-llama/Llama-2-7b-chat-hf" print("started loading model") api_token = "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" # Replace with your actual API token model = AutoModelForCausalLM.from_pretrained( model_name, low_cpu_mem_usage=True, return_dict=True, torch_dtype=torch.float16, revision="main", # Or the desired revision ) tokenizer = AutoTokenizer.from_pretrained( model_name, revision="main", # Or the desired revision ) print("loaded model") tokenizer = AutoTokenizer.from_pretrained(model_name) print("loaded tokenizer") chat_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) print("built pipeline") # Define the generate_response function def generate_response(prompt): response = chat_pipeline(prompt, max_length=50)[0]['generated_text'] return response # Create Gradio interface interface = gr.Interface( fn=generate_response, inputs="text", outputs="text", layout="vertical", title="LLAMA-2-7B Chatbot", description="Enter a prompt and get a chatbot response.", examples=[["Tell me a joke."]], ) if __name__ == "__main__": interface.launch()