import os import json import gradio as gr import tempfile from PIL import Image, ImageDraw, ImageFont import cv2 from typing import Tuple, Optional import torch from pathlib import Path import time import torch import spaces from video_highlight_detector import ( load_model, BatchedVideoHighlightDetector, get_video_duration_seconds ) def load_examples(json_path: str) -> dict: with open(json_path, 'r') as f: return json.load(f) def format_duration(seconds: int) -> str: hours = seconds // 3600 minutes = (seconds % 3600) // 60 secs = seconds % 60 if hours > 0: return f"{hours}:{minutes:02d}:{secs:02d}" return f"{minutes}:{secs:02d}" def add_watermark(video_path: str, output_path: str): watermark_text = "🤗 SmolVLM2 Highlight" command = f"""ffmpeg -i {video_path} -vf \ "drawtext=text='{watermark_text}':fontcolor=white:fontsize=24:box=1:boxcolor=black@0.5:\ boxborderw=5:x=w-tw-10:y=h-th-10" \ -codec:a copy {output_path}""" os.system(command) @spaces.GPU def process_video( video_path: str, progress = gr.Progress() ) -> Tuple[str, str, str, str]: try: duration = get_video_duration_seconds(video_path) if duration > 1200: # 20 minutes return None, None, None, "Video must be shorter than 20 minutes" progress(0.1, desc="Loading model...") model, processor = load_model() detector = BatchedVideoHighlightDetector(model, processor) progress(0.2, desc="Analyzing video content...") video_description = detector.analyze_video_content(video_path) progress(0.3, desc="Determining highlight types...") highlight_types = detector.determine_highlights(video_description) progress(0.4, desc="Detecting and extracting highlights...") with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file: temp_output = tmp_file.name detector.create_highlight_video(video_path, temp_output) progress(0.9, desc="Adding watermark...") output_path = temp_output.replace('.mp4', '_watermark.mp4') add_watermark(temp_output, output_path) os.unlink(temp_output) video_description = video_description[:500] + "..." if len(video_description) > 500 else video_description highlight_types = highlight_types[:500] + "..." if len(highlight_types) > 500 else highlight_types return output_path, video_description, highlight_types, None except Exception as e: return None, None, None, f"Error processing video: {str(e)}" def create_ui(examples_path: str): examples_data = load_examples(examples_path) with gr.Blocks() as app: gr.Markdown("# Video Highlight Generator") gr.Markdown("Upload a video (max 20 minutes) and get an automated highlight reel!") with gr.Row(): gr.Markdown("## Example Results") for example in examples_data["examples"]: with gr.Row(): with gr.Column(): gr.Markdown(f"## {example['title']}") gr.Video( value=example["original"]["url"], label=f"Original ({format_duration(example['original']['duration_seconds'])})", interactive=False ) with gr.Column(): with gr.Accordion("Model chain of thought details", open=False): gr.Markdown(example["analysis"]["video_description"]) gr.Markdown(example["analysis"]["highlight_types"]) gr.Video( value=example["highlights"]["url"], label=f"Highlights ({format_duration(example['highlights']['duration_seconds'])})", interactive=False ) gr.Markdown("## Try It Yourself!") with gr.Row(): input_video = gr.Video( label="Upload your video (max 20 minutes)", interactive=True ) with gr.Row(visible=False) as results_row: with gr.Column(): video_description = gr.Markdown(label="Video Analysis") with gr.Column(): highlight_types = gr.Markdown(label="Detected Highlights") with gr.Row(visible=False) as output_row: output_video = gr.Video(label="Highlight Video") download_btn = gr.Button("Download Highlights") error_msg = gr.Markdown(visible=False) def on_upload(video): results_row.visible = False output_row.visible = False error_msg.visible = False if not video: error_msg.visible = True error_msg.value = "Please upload a video" return None, None, None, error_msg output_path, desc, highlights, err = process_video(video) if err: error_msg.visible = True error_msg.value = err return None, None, None, error_msg results_row.visible = True output_row.visible = True return output_path, desc, highlights, "" input_video.change( on_upload, inputs=[input_video], outputs=[output_video, video_description, highlight_types, error_msg] ) download_btn.click( lambda x: x, inputs=[output_video], outputs=[output_video] ) return app if __name__ == "__main__": # Initialize CUDA device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') zero = torch.Tensor([0]).to(device) app = create_ui("video_spec.json") app.launch()