Datasets-Metrics-Viewer / src /logic /data_fetching.py
hynky's picture
hynky HF staff
⚡️ make it faster
276d919
from functools import lru_cache, partial
import os
import json
import re
import tempfile
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict
from datatrove.io import get_datafolder, _get_true_fs
from datatrove.utils.stats import MetricStatsDict
import gradio as gr
import tenacity
from src.logic.graph_settings import Grouping
def find_folders(base_folder: str, path: str) -> List[str]:
base_folder_df = get_datafolder(base_folder)
if not base_folder_df.exists(path):
return []
from huggingface_hub import HfFileSystem
extra_options = {}
if isinstance(_get_true_fs(base_folder_df.fs), HfFileSystem):
extra_options["expand_info"] = False # speed up
return (
folder
for folder,info in base_folder_df.find(path, maxdepth=1, withdirs=True, detail=True, **extra_options).items()
if info["type"] == "directory" and not (folder.rstrip("/") == path.rstrip("/"))
)
def fetch_datasets(base_folder: str, progress=gr.Progress()):
datasets = sorted(progress.tqdm(find_folders(base_folder, "")))
if len(datasets) == 0:
raise ValueError("No datasets found")
return datasets, None
def fetch_groups(base_folder: str, datasets: List[str], old_groups: str, type: str = "intersection"):
if not datasets:
return gr.update(choices=[], value=None)
with ThreadPoolExecutor() as executor:
GROUPS = list(executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, run)], datasets))
if len(GROUPS) == 0:
return gr.update(choices=[], value=None)
if type == "intersection":
new_choices = set.intersection(*(set(g) for g in GROUPS))
else:
new_choices = set.union(*(set(g) for g in GROUPS))
value = None
if old_groups:
value = list(set.intersection(new_choices, {old_groups}))
value = value[0] if value else None
if not value and len(new_choices) == 1:
value = list(new_choices)[0]
return gr.Dropdown(choices=sorted(list(new_choices)), value=value)
def fetch_metrics(base_folder: str, datasets: List[str], group: str, old_metrics: str, type: str = "intersection"):
if not group:
return gr.update(choices=[], value=None)
with ThreadPoolExecutor() as executor:
metrics = list(
executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, f"{run}/{group}")], datasets))
if len(metrics) == 0:
return gr.update(choices=[], value=None)
if type == "intersection":
new_possibles_choices = set.intersection(*(set(s) for s in metrics))
else:
new_possibles_choices = set.union(*(set(s) for s in metrics))
value = None
if old_metrics:
value = list(set.intersection(new_possibles_choices, {old_metrics}))
value = value[0] if value else None
if not value and len(new_possibles_choices) == 1:
value = list(new_possibles_choices)[0]
return gr.Dropdown(choices=sorted(list(new_possibles_choices)), value=value)
def reverse_search(base_folder: str, possible_datasets: List[str], grouping: str, metric_name: str) -> str:
with ThreadPoolExecutor() as executor:
found_datasets = list(executor.map(
lambda dataset: dataset if metric_exists(base_folder, dataset, metric_name, grouping) else None,
possible_datasets))
found_datasets = [dataset for dataset in found_datasets if dataset is not None]
return "\n".join(found_datasets)
def reverse_search_add(datasets: List[str], reverse_search_results: str) -> List[str]:
datasets = datasets or []
return list(set(datasets + reverse_search_results.strip().split("\n")))
def metric_exists(base_folder: str, path: str, metric_name: str, group_by: str) -> bool:
base_folder = get_datafolder(base_folder)
return base_folder.exists(f"{path}/{group_by}/{metric_name}/metric.json")
@tenacity.retry(stop=tenacity.stop_after_attempt(5))
def load_metrics(base_folder: str, path: str, metric_name: str, group_by: str) -> MetricStatsDict:
base_folder = get_datafolder(base_folder)
with base_folder.open(f"{path}/{group_by}/{metric_name}/metric.json") as f:
json_metric = json.load(f)
return MetricStatsDict.from_dict(json_metric)
def load_data(dataset_path: str, base_folder: str, grouping: str, metric_name: str) -> MetricStatsDict:
return load_metrics(base_folder, dataset_path, metric_name, grouping)
def fetch_graph_data(
base_folder: str,
datasets: List[str],
metric_name: str,
grouping: Grouping,
progress=gr.Progress(),
):
if len(datasets) <= 0 or not metric_name or not grouping:
return None, None
with ThreadPoolExecutor() as pool:
data = list(
progress.tqdm(
pool.map(
partial(load_data, base_folder=base_folder, metric_name=metric_name, grouping=grouping),
datasets,
),
total=len(datasets),
desc="Loading data...",
)
)
data = {path: result for path, result in zip(datasets, data)}
return data, None
def update_datasets_with_regex(regex: str, selected_runs: List[str], all_runs: List[str]):
if not regex:
return []
new_dsts = {run for run in all_runs if re.search(regex, run)}
if not new_dsts:
return selected_runs
dst_union = new_dsts.union(selected_runs or [])
return sorted(list(dst_union))