import gradio as gr import numpy as np import random import spaces from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline import torch from src.linfusion import LinFusion device = "cuda" if torch.cuda.is_available() else "cpu" all_model_id = { "DreamShaper-8": "Lykon/dreamshaper-8", "RealisticVision-v4.0": "SG161222/Realistic_Vision_V4.0_noVAE", "SD-v1.4": "CompVis/stable-diffusion-v1-4" } if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 16384 pipes = {} for model_id, repo_id in all_model_id.items(): pipes[model_id + '_t2i'] = StableDiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype) LinFusion.construct_for(pipes[model_id + '_t2i']) pipes[model_id + '_ip_adapter'] = StableDiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype) pipes[model_id + '_ip_adapter'].load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin") LinFusion.construct_for(pipes[model_id + '_ip_adapter']) pipes[model_id + '_i2i'] = StableDiffusionImg2ImgPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype) LinFusion.construct_for(pipes[model_id + '_i2i']) @spaces.GPU def infer_t2i(model, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe = pipes[model + '_t2i'].to(device) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image, seed @spaces.GPU def infer_i2i(model, prompt, image, strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe = pipes[model + '_i2i'].to(device) image = pipe( prompt = prompt, image = image.resize((width, height)), strength = strength, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image, seed @spaces.GPU def infer_ip_adapter(model, prompt, image, scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe = pipes[model + '_ip_adapter'].to(device) pipe.set_ip_adapter_scale(scale) image = pipe( prompt = prompt, image = image.resize((width, height)), negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, ip_adapter_image = image, width = width, height = height, generator = generator ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Tab("Text-to-Image"): with gr.Column(elem_id="col-container"): gr.Markdown(f""" # LinFusion Text-to-Image Gradio Demo """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) model_choice = gr.Dropdown(label="Choose Model", choices=list(all_model_id.keys()), value=list(all_model_id.keys())[0]) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, #Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, #Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, #Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=25, #Replace with defaults that work for your model ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn=infer_t2i, inputs = [model_choice, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) with gr.Tab("Image-to-Image"): with gr.Column(elem_id="col-container"): gr.Markdown(f""" # LinFusion Image-to-Image Gradio Demo """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) image_upload_input = gr.Image(label="Upload an Image", type="pil") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) model_choice = gr.Dropdown(label="Choose Model", choices=list(all_model_id.keys()), value=list(all_model_id.keys())[0]) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, #Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, #Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, #Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=25, #Replace with defaults that work for your model ) editing_strength = gr.Slider( label="Strength of editing", minimum=0, maximum=1, step=0.01, value=0.5, #Replace with defaults that work for your model ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn=infer_i2i, inputs = [model_choice, prompt, image_upload_input, editing_strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) with gr.Tab("IP-Adapter"): with gr.Column(elem_id="col-container"): gr.Markdown(f""" # LinFusion IP-Adapter Gradio Demo """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) image_upload_input = gr.Image(label="Upload an Image", type="pil") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) model_choice = gr.Dropdown(label="Choose Model", choices=list(all_model_id.keys()), value=list(all_model_id.keys())[0]) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, #Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, #Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, #Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=25, #Replace with defaults that work for your model ) ip_adapter_scale = gr.Slider( label="Strength of image condition", minimum=0, maximum=1, step=0.01, value=0.4, #Replace with defaults that work for your model ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn=infer_ip_adapter, inputs = [model_choice, prompt, image_upload_input, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.queue().launch()